Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Effects of Surface Compound Layer on Bending Fatigue Strength of Nitrided Chromium-Molybdenum Steel

2020-01-24
2019-32-0504
Carburized and quenched materials with high fatigue strength are often used for motorcycle engine parts. Nitrided materials exhibit less deformation during heat treatment than carburized and quenched materials, so if the same or higher fatigue strength can be achieved with nitrided materials as with carburized and quenched materials, the geometric precision of parts can be increased and we can reduce engine noise as well as power loss. When the fatigue strengths of a nitrided material with its compound layer surface put into γ’ phase through nitriding potential control (hereafter, G), and a nitrided material put into ε phase (hereafter, E) were measured, the results showed the fatigue strength of the G to be about 11% higher than that of carburized and quenched materials. It was inferred that the strength of the compound layer determines fatigue strength.
Technical Paper

Lifetime Prediction of a Crankpin using a Ball on Disk Type Rolling Contact Fatigue Life Testing

2007-10-30
2007-32-0085
This paper describes an experimental method to predict the rolling contact fatigue life of a crankpin in a market vehicle engine. The fatigue life up to pitting was evaluated by two laboratory tests including a fatigue life measurement using a ball-on-disk test machine and a crankpin durability measurement by an engine bench test. The surface observation after the tests revealed that the surface dent triggers pitting in both tests. The Weibull plot of the percent failure vs. cycle to failure as a function of the contact stress was presented. In order to directly evaluate the effect of the contact stress on the lifetime, the lifetime values measured at L50 are plotted in the diagram showing the contact stress vs. cycle to failure. The obtained relation can predict the lifetime under the controlled condition in which the number of maximum torque points is countable.
Technical Paper

Study of bonded valve-seat system (BVS)

2000-06-12
2000-05-0144
The Bonded Valve Seat System is the latest technology to realize drastic reduction in valve temperature in SI engines characterized by the good thermal conductivity of extremely thin valve seats bonded directly on the aluminum cylinder head. A unique and highly rationalized resistance bonding technique was developed to maintain adequate bonding strength and positioning precision in a short bonding period of around one second. Engineering data on optimization of bonding-section geometry, valve seat material and the surface treatment and bonding parameters were presented and discussed regarding the mechanism. The geometry of the bonding section of the cylinder head was optimized by FEM analysis so that the aluminum material should deform to embed the valve seat ring with the action of expelling the surface contamination and the oxide film. The bonding facility was modified so that the electrode axis should move flexibly according to distortion of the cylinder head during bonding.
X