Refine Your Search

Topic

Author

Search Results

Technical Paper

04 Emission Reduction by Cylinder Wall Injection in 2-Stroke S.I. Engines

2002-10-29
2002-32-1773
A direct injection system in which fuel was injected through the cylinder wall was developed and detailed investigation was made for the purpose of reducing short-circuit of fuel in 2-stroke engines. As a result of dynamo tests using 430cc single cylinder engine, it was found that the injector was best attached at a location as close to TDC as possible on the rear transfer port side, and that the entire amount of fuel should be injected towards the piston top surface. Emissions were worsened if fuel was injected towards the exhaust port or spark plug. Although the higher injection pressure resulted in large emissions reduction effects, it did not have a significant effect on fuel consumption. When a butterfly exhaust valve, known to be effective against irregular combustion in the light load range, was applied, it was found to lead to further reductions in HC emission and fuel consumption while also improving combustion stability.
Technical Paper

12 Present situation of Automated Guided Vehicle

2002-10-29
2002-32-1781
Many automated guided golf cars using the electromagnetic guide technology are used in Japan to obtain more convenient and safer golf play. Now this technology is beginning to be used outside of the golf course as an on-demand people mover system. This paper presents an example of the engineering system of automated guided golf cars along for the 2 principles of automated guided vehicle. The first principle is “the steering control system including the automatic sensitivity adjustment function”, and the other principle is “the vehicle speed control system”.
Technical Paper

Advanced Super Charge System for Small Engines

1999-09-28
1999-01-3318
The specific output of 4-cycle engines are generally smaller than that of 2-cycle engines. Increasing engine speed is one method to improve the specific output, however, it contains some disadvantages in application. Hence, improvement in torque with the 4-cycle engine is desirable. Although torque could be improved by super-charging, it seems difficult to apply existing systems for small displacement engines due to problems of their size and cost. We have, therefore, newly developed a super-charging system named Advanced Crankcase Super Charge (hereinafter referred to as ACSC) using a crankcase as a supercharger. In this study, we made a 50cc single cylinder prototype engine with ACSC and carried out the engine unit tests and actual running tests on a scooter. From these tests, the torque that is twice as that of the naturally aspirated engine was obtained.
Technical Paper

An Experimental Study of Connecting Rod Big Ends

1995-02-01
950202
Connecting rod design factors, such as geometric shape, capscrew torque and materials can significantly affect bore distortion and assembly stress. In this paper, experiments using different materials were conducted on several connecting rod big-ends with various shapes, bosses and bolts. The results show that the distortion of the big-end bore and the bolt stress are influenced considerably by the big-end shape, the bolt axial tension and the material under inertia force. It was also observed that the bolt bending stress and the load separating the big-end joint surface could be calculated with high accuracy using three-dimensional FEM in the initial connecting rod design.
Technical Paper

Analyses of Cycle-to-Cycle Variation of Combustion and In-Cylinder Flow in a Port Injection Gasoline Engine Using PIV and PLIF Techniques

2017-10-08
2017-01-2213
Reduction in the cycle-to-cycle variation (CCV) of combustion in internal combustion engines is required to reduce fuel consumption, exhaust emissions, and improve drivability. CCV increases at low load operations and lean/dilute burn conditions. Specifically, the factors that cause CCV of combustion are the cyclic variations of in-cylinder flow, in-cylinder distributions of fuel concentration, temperature and residual gas, and ignition energy. However, it is difficult to measure and analyze these factors in a production engine. This study used an optically accessible single-cylinder engine in which combustion and optical measurements were performed for 45 consecutive cycles. CCVs of the combustion and in-cylinder phenomena were investigated for the same cycle. Using this optically accessible engine, the volume inside the combustion chamber, including the pent-roof region can be observed through a quartz cylinder.
Technical Paper

Analysis of Cycle-to-Cycle Variation in a Port Injection Gasoline Engine by Simultaneous Measurement of Time Resolved PIV and PLIF

2020-01-24
2019-32-0552
Cycle-to-cycle variation (CCV) of combustion in low load operation is a factor that may cause various problems in engine operation. Variable valve timing and variable ignition timing are commonly used as a means to reduce this variation. However, due to mountability and cost constraints, these methods are not feasible for use in motorcycle engines. Therefore, development of an engine with minimal CCV without utilizing complicated mechanisms or electronic control is required. CCV of combustion may be caused by fluctuations in in-cylinder flow, air-fuel mixture, temperature, residual gas and ignition energy. In this study, the relationship between CCV of combustion, in-cylinder flow fluctuation and air-fuel mixture fluctuation was the primary focus. In order to evaluate in-cylinder flow fluctuation, Time Resolved Particle Image Velocimetry (TR-PIV) technique was utilized.
Technical Paper

Analysis of Cyclic Variations of Combustion in High Compression Ratio Boosted D.I.S.I. Engine by Ion-Current Probes and CFD

2009-04-20
2009-01-1484
Regarding S.I. gasoline engine, it is one of the most important matters to eliminate cyclic variation of combustion. Especially with high compression ratio and high boosted engine, the difficulties increase more. This paper describes the analysis of combustion process precisely by using many ion-current probes and CFD with the unique approaches. The number of used ion-current probes is 80 and they are mounted on whole combustion chamber wall especially including moving intake and exhaust valve faces. Thus cyclic variations of flame propagation can be measured precisely under high compression ratio and high boosted conditions in a multi-cylinder engine. In addition, CFD combustion simulation is conducted through full four strokes of continuous nine cycles. Moreover air motion and pressure vibration in intake and exhaust manifolds in whole cycles are considered. These unique approaches have made CFD result correspond to the measurement result of cyclic variations of actual combustion.
Technical Paper

Analysis of the Behavior of Liquid in a Fuel Tank

1988-11-01
881782
The behavior of the liquid in the motorcycle fuel tank is an interesting theme from the viewpoint of the fuel meter construction, as effected by variance in the fuel pressure resulting from acceleration or deceleration, etc. It can be assumed that the behavior of the liquid in the fuel tank will be affected by the running pattern, the shape and capacity of the fuel tank, etc. Here is a report on an experiment recently made to observe how the liquid behaves in a partially fully enclosed tank. We simplified the tank shape and the involved conditions (to actually observe the behavior of the inside liquid by the suspension method.) Then we have analized the effectes according to different liquid containers, to different velocities, and to different liquid volumes as well as the time history variance in the internal pressure.
Technical Paper

Application of Chaos Theory to Engine Systems

2008-09-09
2008-32-0010
We focus on the control issue for engine systems from the perspective of chaos theory, which is based on the fact that engine systems have a low-dimensional chaotic dynamics. Two approaches are discussed: controlling chaos and harnessing chaos, respectively. We apply Pyragas' chaos control method to an actual engine system. The experimental results show that the chaotic motion of an engine system may be stabilized to a periodic motion. Alternatively, harnessing chaos for engine systems is addressed, which regards chaos as an essential dynamic mode for the engine.
Technical Paper

Application of FEM Analysis Using Loads Predicted from Strain Measurement in Motorcycle Frame Development

2013-10-15
2013-32-9044
This paper presents an approach for efficiently evaluating motorcycle main frame strength using external loads predicted from measured strain data in our development process. The loads are calculated by simple matrix inversion, and can be used as boundary conditions of static analysis that resembles actual phenomena. The advantage of this method is that it allows relatively precise reproduction of actual boundary conditions without the data usually needed for dynamic simulation such as tire and suspension characteristics which often take large amount of time and man-hour to obtain. Although this approach is simple and common practice, there are a lot of things to be concerned for gaining useful results in a broad range of stages in the motorcycle main frame development process. How we effectively make use of this approach is going to be introduced here.
Journal Article

Application of Vacuum Assisted Carbide Dispersion Carbonitriding to Connecting Rods

2013-10-15
2013-32-9082
In four-cycle single-cylinder motorcycle engines, high Hertzian stress is generated on and beneath the big-end surface of the connecting rod. If the surface strength would be improved, the diameter of the big-end could be made smaller, making the entire engine smaller and lighter. Therefore, application of carbide dispersion carbonitriding using a vacuum furnace (hereinafter referred to as “vacuum CD carbonitriding”) on the big-end surface was investigated. Vacuum CD carbonitriding was carried out by three processes. The first was a CD carburizing process. This process is done to obtain granular cementite, but in order to avoid decreasing the strength, it is necessary to prevent the formation of coarsened cementite at the grain boundary. The second process was a refining process. This process is done for the purpose of refining the prior austenite grain size. The third process was a carbonitriding process.
Technical Paper

Application of Vibration Simulation Methods to the Design of Motorcycles

1989-09-01
891994
Recently it is becoming more necessary than ever to carry out performance prediction and factor analysis at the initial design by-computer aided engineering (CAE), in order to ensure the high performance, safety and reliability of motorcycles and also to shorten the lead time of product development. Finite element method (FEM) plays a crucial role in this respect. In particular, since the vibration characteristic is one of the most important evaluation items, the demand for accurate vibration prediction at the initial design has become much more intense. In recent years, vibration simulation methods have achieved remarkable progress, and especially the substructural synthesis method (SSM), combined with FEM, is used as an effective tool for the requirements.
Technical Paper

Combustion Noise of Two-Stroke Gasoline Engines and its Reduction Techniques

1989-05-01
891125
In order to obtain more reduction of two-stroke motorcycle engine noise than usual, it becomes necessary to make improvements within the combustion process itself. This study was carried out for two objectives. One is the investigation of the relationship between combustion and noise, and the other one is the development of noise reduction techniques. As the result, it was discovered that there was a significant correlation between engine noise and (dP/dθ)max, called the maximum rate of cylinder pressure rise. Therefore, the reduction of the (dP/dθ) max was recognized to be effective for engine noise reduction. The optimized alteration of combustion chamber shape is the most effective noise reduction technique, because it is able to reduce (dP/dθ) max without any sacrifice of engine power. In fact, the level of noise reduction can be predicted by one of the parameters obtained from the combustion chamber shape.
Technical Paper

Development of CVT Shift Dynamic Simulation Model with Elastic Rubber V-Belt

2011-11-08
2011-32-0518
This paper presents a practical simulation model of the rubber V-belt CVT which is widely used as a low cost driveline element for small displacement motorcycles. The characteristic of this CVT is determined by the axial force balance between driver and driven pulleys, and the elastic force of a rubber V-belt. Because these axial and elastic forces are calculated by the kinematic and FEM analysis, a large-scale simulation model which costs long execution time for the calculation is needed to estimate the characteristic of CVT. This calculation uses the one-dimensional simulation model built up with MATLAB and SIMULINK environment, so that it was possible to get the calculation result with relatively low execution time. The elastic deformation of the rubber V-Belt was calculated by a simple spring model which was verified by experiments and FEM.
Technical Paper

Development of Compact Continuously Variable Transmission Engine for Motorcycles

2011-08-30
2011-01-2030
The continuously variable transmission (CVT) with a rubber belt used in scooters is also regarded as a potential automatic transmission mechanism for conventional motorcycles. By making this system more compact and building it into the engine, a motorcycle CVT engine has been developed that is about the same size as a manual transmission (MT) engine. During driving with a CVT, heat is generated by friction at the sheaves, and therefore it was necessary to secure a certain length of belt to ensure that external air flows efficiently to the sheaves. However, making the CVT more compact restricted the belt length, which decreased cooling performance and increased the number of bends in the belt, making it difficult to maintain durability. To address this issue, a plastic resin drive belt and newly designed sheaves were adopted, and durability of more than that of a scooter was achieved.
Technical Paper

Development of Fracture Splitting Method for Case Hardened Connecting Rods

2004-09-27
2004-32-0064
The fracture splitting (FS) method for case hardened connecting rods has been developed to improve engine performance while decreasing production costs. The FS method is widely used for automotive connecting rods because it effectively improves their productivity. Normalized forging steels, microalloyed forging steels and powder metals have generally been used as the material in the FS method as they are easily split due to their brittleness. On the other hand, the materials to be used for high performance motorcycles are case hardened low carbon steels because they allow the connecting rods to be lightweight due to their high fatigue strengths. These materials, which have a hardened area of approx. 0.5mm in depth from the surface, have a ductile texture inside. This texture obstructs the crack propagation and makes the split force too high to split without deforming the bearing area.
Journal Article

Development of Fracture-Split Connecting Rods Made of Titanium Alloy for Use on Supersport Motorcycles

2015-11-17
2015-32-0830
A connecting rod made of titanium alloy is effective for lower fuel consumption and higher power output comparing to a steel one because the titanium connecting rod enables to reduce the weight of both of reciprocating and rotating parts in an entire engine substantially. But up to now, it has been adopted only to expensive and small-lot production models because a material cost is high, a processing is difficult and a wear on a sliding area should be prevented. In order to adopt the titanium connecting rods into a more types of motorcycles, appropriate materials, processing methods and surface treatment were considered. Hot forging process was applied not only to reduce a machining volume but also to enhance a material strength and stiffness. And the fracture-splitting (FS) method for the big-end of the titanium connecting rod was put into a practical use.
Technical Paper

Development of Magnetostriction-type Load Sensor for Measurement System Using Motorcycle Testing Robot

2002-03-04
2002-01-1073
A control system for auto driving of motorcycle using anthropomorphic robot has been developed to efficiently evaluate a motorcycle with high accuracy, the performance of which is becoming higher. For magnetostriction-type load sensor, which is absolutely necessary for this system, the strain gauge type load cell has been used conventionally. However, the detection sensitivity, strength, and responsibility have not been satisfied completely under engine vibration conditions. To solve this problem, a magnetostriction-type load sensor has been newly developed. As a result of the tests with actual machines, it is found that this magnetostriction-type load sensor satisfies the conditions necessary for the motorcycle drive control system and measurement system.
Technical Paper

Development of Motorcycle Engine Starting System Simulation Considering Air-Fuel Ratio Control

2017-11-05
2017-32-0045
Recently the response of the engine speed at starting has more importance than ever for quick start satisfying rider’s needs, as well as exhaust emissions. We have developed a simulation for studying engine and starter specifications, engine control algorithm and other engine control parameters. This system can be utilized to realize appropriate starting time by considering air-fuel ratio under various conditions. This paper addresses what are taken account of in our method. Examples applying this to a conventional motorcycle engine are shown.
Journal Article

Development of New Concept Two-Wheel Steering System for Motorcycles

2013-10-15
2013-32-9106
This paper describes the development of a new concept two-wheel steering system for realizing motorcycle motion control. By considering the whole of the main frame as the rear-wheel steering axis, it was possible to move the rear-wheel steering system from the conventional installation position at the rear arm to the head pipe. As a result, the developed two-wheel steering system is both lightweight and compact. This two-wheel steering system was installed in a motorcycle, and starting and stopping tests were carried out with two people riding on the motorcycle. The test results confirmed that the two-wheel steering system is capable of changing the motion characteristics of the motorcycle in actual riding. Furthermore, by calculating the equivalent wheel alignment of this system, this paper also theoretically demonstrates that these changes in motion characteristics are caused by changes in caster and trail.
X