Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

3-Dimensional Numerical Simulation and Research on Internal Flow about Different EGR Rates in Venturi Tube of EGR System for a Turbocharged Diesel Engine

2024-04-09
2024-01-2418
Exhaust gas recirculation technology is one of the main methods to reduce engine emissions. The pressure of the intake pipe of turbocharged direct-injection diesel engine is high, and it is difficult to realize EGR technology. The application of Venturi tube can easily solve this problem. In this paper, the working principle of guide-injection Venturi tube is introduced, the EGR system and structure of a turbocharged diesel engine using the guide-injection Venturi tube are studied. According to the working principle of EGR system of turbocharged diesel engine, the model of guide-injection Venturi tube is established, the calculation grid is divided, and it is carried out by using Computational Fluid Dynamics method that the three-dimensional numerical simulation of the internal flow of Venturi tube under different EGR rates injection.
Technical Paper

3-Dimentional Numerical Transient Simulation and Research on Flow Distribution Unevenness in Intake Manifold for a Turbocharged Diesel Engine

2024-04-09
2024-01-2420
The design of engine intake system affects the intake uniformity of each cylinder of the engine, which in turn has an important impact on the engine performance, the uniform distribution of EGR exhaust gas and the combustion process of each cylinder. In this paper, the constant-pressure supercharged diesel engine intake pipe is used as the research model to study the intake air flow unevenness of the intake pipe of the supercharged diesel engine. The pressure boundary condition at the outlet of each intake manifold is set as the dynamic pressure change condition. The three-dimensional numerical simulation of the transient flow process in the intake manifold of diesel engine is simulated and analyzed by using numerical method, and the change of the Intake air flow field in the intake manifold under different working conditions during the intake overlapping period is discussed.
Technical Paper

A Study of LPG Lean Burn for a Small SI Engine

2002-10-21
2002-01-2844
This paper presents a study of LPG lean burn in a motorcycle SI engine. The lean burn limits are compared by several ways. The relations of lean burn limit with the parameters, such as engine speed, compression ratio and advanced spark ignition etc. are tested. The experimental results show that larger throttle opening, lower engine speed, earlier spark ignition timing, larger electrode gap and higher compression ratio will extend the lean burn limit of LPG. The emission of a LPG engine, especially on NOx emission, can be significantly reduced by means of the lean burn technology.
Technical Paper

A Study on Nonlinear Stiffness Characteristic of Air Spring for a Bus

2002-11-18
2002-01-3092
Using the nonlinear finite element analysis, three nonlinear characteristics of the rubber gasbag of the air spring on the bus are thoroughly analyzed, including the nonlinear characteristic of the rubber gasbag with multi layers of composite materials, the nonlinear large displacement geometry characteristic of the rubber gasbag on working, and the nonlinear contact characteristic of the rubber gasbag when contacts the pedestal and the top cover plate. A model is build and the nonlinear characteristic of the air spring on the bus is analyzed using the ABAQUS software. At last, the article discusses parameters that influence on the characteristic of the air spring for the bus.
Technical Paper

Automobile Interior Noise Prediction Based on Energy Finite Element Method

2011-04-12
2011-01-0507
For the purpose of predicting the interior noise of a passenger automobile at middle and high frequency, an energy finite element analysis (EFEA) model of the automobile was created using EFEA method. The excitations including engine mount excitation and road excitation were measured by road experiment at a speed of 120 km/h. The sound excitation was measured in a semi-anechoic chamber. And the wind excitation was calculated utilizing numeric computation method of computational fluid dynamics (CFD). The sound pressure level (SPL) and energy density contours of the interior acoustic cavity of the automobile were presented at 2000 Hz. Meanwhile, the flexural energy density and flexural velocity of body plates were calculated. The SPL of interior noise was predicted and compared with the corresponding value of experiment.
Technical Paper

Combustion and Emissions Characteristics of a Small Spark-Ignited LPG Engine

2002-05-06
2002-01-1738
This paper presents an experimental study of the emission characteristics of a small Spark-Ignited, LPG engine. A single cylinder, four-stroke, water-cooled, 125cc SI engine for motorcycle is modified for using LPG fuel. The power output of LPG is above 95% power output of gasoline. The emission characteristics of LPG are compared with the gasoline. The test result shows that LPG for small SI engine will help to reduce the emission level of motorcycles. The HC and CO emission level can be reduced greatly, but NOx emissions are increased. The emission of motorcycle using LPG shows the potential to meet the more strict regulation.
Technical Paper

Combustion and Emissions of Ethanol Fuel (E100) in a Small SI Engine

2003-10-27
2003-01-3262
An air-cooled, four-stroke, 125 cc electronic gasoline fuel injection SI engine for motorcycles is altered to burn ethanol fuel. The effects of nozzle orifice size, fuel injection duration, spark timing and the excess air/ fuel ratio on engine power output, fuel and energy consumptions and engine exhaust emission levels are studied on an engine test bed. The results show that the maximum engine power output is increased by 5.4% and the maximum torque output is increased by 1.9% with the ethanol fuel in comparison with the baseline. At full load and 7000 r/min, HC emission is decreased by 38% and CO emission is decreased 46% on average over the whole engine speed range. However, NOx levels are increased to meet the maximum power output. The experiments of the spark timing show that the levels of HC and NOx emission are decreased markedly by the delay of spark timing.
Technical Paper

Control Strategy of Hybrid Electric Vehicle with Double Planetary Gear Sets

2015-04-14
2015-01-1216
Hybrid Electric Vehicles with a power split system provide a variety of possibilities to promote the fuel economy of vehicles and better adapt to various driving conditions. In this paper, a new power split system of a hybrid electric bus which consists of double planetary gear sets and a clutch is introduced. The system is able to decouple both the torque and speed of the engine from the road load, which makes it possible for the engine to operate on its optimal operation line (OOL). Considering the features of the system configuration and bus driving cycle, the driving mode of the bus is divided into Electric Vehicle (EV) mode, Electric Variable Transmission (EVT) mode and Parallel mode. By controlling the engagement of the clutch at high vehicle speed (after the mechanical point), the system operates in the parallel mode rather than EVT mode. This avoids the problem that the system efficiency sharply declines in high speed region which EVT configurations are generally faced with.
Technical Paper

Coordinated Control of Continuously Variable Transmission Speed Ratio in Engine Starting-Up for Hybrid Electric Vehicle

2021-03-16
2021-01-5003
In order to improve the mode switching performance of parallel hybrid electric vehicles (PHEV) and make better use of the dynamics of the vehicle, this paper proposes a three-stage control method for the start-up mode of start-up, speed synchronization, and clutch slip based on the response characteristics of actual vehicle components and the complex working conditions of the actual road. In the speed synchronization phase, a coordinated control method of “engine speed active following + continuously variable transmission (CVT) speed ratio motor speed limiting” is proposed. The real vehicle test results show that the engine starting-up coordinated control method can significantly accelerate the speed synchronization and shorten the starting-up mode duration during the rapid acceleration, so that the vehicle’s power performance can be well played and the ride comfort can be effectively guaranteed.
Technical Paper

Develop Hybrid Transit Buses for Chinese Cities1

2003-03-03
2003-01-0087
This paper summarized the first phase research work to develop hybrid transit buses for China, including driving cycle analysis, performance requirements setting, key components first dimensioning, configuration choosing, saving potential estimate and parametric study. Through these fundamental works, we realize that (1) the Chinese urban bus cycle has some specialties compared with foreign ones, and these specialties cause differences on the design criteria and design results of the hybrid buses; (2) the parallel configuration is better than the series one for the Chinese cycle from both fuel consumption and cost points of view.
Technical Paper

Development and Validation of New Control Algorithm for Parallel Hybrid Electric Transit Bus

2006-10-31
2006-01-3571
The new control algorithm for parallel hybrid electric vehicle is presented systematically, in which engine operation points are limited within higher efficient area by the control algorithm and the state of charge (SOC) is limited in a range in order to enhance the batteries' charging and discharging efficiency. In order to determine the ideal operating point of the vehicle's engine, the control strategy uses a lookup table to determine the torque output of the engine. The off-line simulation model of parallel HEV power train is developed which includes the control system and controlled objective (such as engine, electric motor, battery pack and so on). The results show that the control algorithm can effectively limite engine and battery operation points and much more fuel economy can be achieved than that of conventional one.
Technical Paper

EGR Response in a Turbo-charged and After-cooled DI Diesel Engine and Its Effects on Smoke Opacity

2008-06-23
2008-01-1677
Three thermo-wires with amplifying circuits have been developed to measure the time-resolved concentration of the exhaust gas recirculated into the intake manifold by a rotary valve-based exhaust gas recirculation (EGR) system of a diesel engine. Good agreement was found between the EGR rates measured by the temperature based system and a conventional CO2 tracing system. The developed EGR measuring system was used to investigate the EGR transient response in a turbo-charged and after-cooled diesel engine with a real-time measure and control system. The EGR response under EGR valve step change and engine transient operating conditions are discussed. At first, the engine was running under a certain steady condition with zero recirculated exhaust gas, then the rotary valve opened to maximum within 0.1s to demonstrate the EGR step change behavior. EGR rate and air intake stabilized in 0.5s.
Technical Paper

Effects of Fuel Injection Characteristics on Heat Release and Emissions in a DI Diesel Engine Operated on DME

2001-09-24
2001-01-3634
In this study, an experimental investigation was conducted using a direct injection single-cylinder diesel engine equipped with a test common rail fuel injection system to clarify how dimethyl ether (DME) injection characteristics affect the heat release and exhaust emissions. For that purpose the common rail fuel injection system (injection pressure: 15 MPa) and injection nozzle (0.55 × 5-holes, 0.70 × 3-holes, same total holes area) have been used for the test. First, to characterize the effect of DME physical properties on the macroscopic spray behavior: injection quantity, injection rate, penetration, cone angle, volume were measured using high-pressure injection chamber (pressure: 4MPa). In order to clarify effects of the injection process on HC, CO, and NOx emissions, as well as the rate of heat release were investigated by single-cylinder engine test. The effects of the injection rate and swirl ratio on exhaust emissions and heat release were also investigated.
Technical Paper

Efficiency and Emissions performance of Multizone Stratified Compression Ignition Using Different Octane Fuels

2013-04-08
2013-01-0263
Advanced combustion systems that simultaneously address PM and NOx while retaining the high efficiency of modern diesel engines, are being developed around the globe. One of the most difficult problems in the area of advanced combustion technology development is the control of combustion initiation and retaining power density. During the past several years, significant progress has been accomplished in reducing emissions of NOx and PM through strategies such as LTC/HCCI/PCCI/PPCI and other advanced combustion processes; however control of ignition and improving power density has suffered to some degree - advanced combustion engines tend to be limited to the 10 bar BMEP range and under. Experimental investigations have been carried out on a light-duty DI multi-cylinder diesel automotive engine. The engine is operated in low temperature combustion (LTC) mode using 93 RON (Research Octane Number) and 74 RON fuel.
Technical Paper

Electrochemical Characteristics of Cubic ZnFe2O4 Anode for Li-Ion Batteries at Low Temperature

2016-04-05
2016-01-1215
The poor low-temperature behavior of Li-ion batteries has limited its application in the field of electric vehicles and hybrid electric vehicles. Many previous studies concentrate on developing new type of electrolyte to solve this problem. However, according to recent research, the key limitation at low temperature is the low diffusivity of lithium ion in the anode electrodes. Hence, it is potential to study anode materials to improve low-temperature behavior of LIBs. ZnFe2O4 with higher theoretical capacity is low toxicity and abundance, contributing to its commercial application. Different ZnFe2O4 crystalline shapes have different particle sizes. Among them, the cubic ZnFe2O4 with smaller particle size will increase its own electronic and ionic conductance at lower temperature. In this regard, we evaluated low-temperature performance of LIBs with ZnFe2O4 cubes as anode materials at -25°C.
Technical Paper

Experimental Study on Source Identification of Bus Floor's Vibration

2014-04-01
2014-01-0014
To find out the main excitation sources of a bus floor's vibration, modal analysis and spectral analysis were respectively performed in the paper. First we tested the vibration modal of the bus's floor under the full-load condition, and the first ten natural frequencies and vibration modes were obtained for the source identification of the bus floor's vibration. Second the vibration characteristic of the bus floor was measured in an on-road experiment. The acceleration sensors were arranged on the bus's floor and the possible excitation sources of the bus, which includes engine mounting system, driveline system, exhaust system, and wheels. Then the on-road experiment was carefully conducted on a highway under the four kinds of test condition: in-situ acceleration, uniform velocity (90km/h, 100km/h, 110km/h, 120km/h), uniform acceleration with top gear, and stall sliding condition with neutral gear.
Technical Paper

Experimental and Analytical Property Characterization of a Self-Damped Pneumatic Suspension System

2010-10-05
2010-01-1894
This study investigates the fundamental stiffness and damping properties of a self-damped pneumatic suspension system, based on both the experimental and analytical analyses. The pneumatic suspension system consists of a pneumatic cylinder and an accumulator that are connected by an orifice, where damping is realized by the gas flow resistance through the orifice. The nonlinear suspension system model is derived and also linearized for facilitating the properties characterization. An experimental setup is also developed for validating both the formulated nonlinear and linearized models. The comparisons between the measured data and simulation results demonstrate the validity of the models under the operating conditions considered. Two suspension property measures, namely equivalent stiffness coefficient and loss factor, are further formulated.
Technical Paper

Impact Theory Based Total Cylinder Sampling System and its Application

2008-06-23
2008-01-1795
A novel non-destroy repeatable-use impact theory based total cylinder sampling system has been established. This system is mainly composed of a knocking body and a sampling valve. The knocking body impacts the sampling valve with certain velocity resulting in huge force to open the sampling valve and most of the in-cylinder gas has been dumped to one sampling bag for after-treatment. The feasibility and sampling response characteristics of this impact theory based total cylinder sampling system were investigated by engine bench testing. Within 0 to 35°CA ATDC (Crank Angle After Top Dead Center) sample timing 50 percent to 80 percent of in-cylinder mass would be sampled, which was a little less compared with the traditional system. The half decay period of pressure drop was 10 to 20 degrees crank angle within 0 to 60°CA ATDC sample timing, which was about 2-3 times of the traditional system.
Technical Paper

Improvements on the Start Performance of Diesel Engine by Fuel Control Strategy Optimization and Heating Measures

2008-06-23
2008-01-1646
The incomplete combustion and misfire of diesel engine during starting result in unwanted white smoke. The histories of combustion and emission in different phases under different start conditions were studied in this paper. The optimization of the fuel injection control strategy under start conditions was performed. When the diesel engine is started under low temperature, the control strategy adapted to start the engine with a certain constant fuel mass injected per cycle, there may be misfire cycles in the initial period or in the transitional process, which is mainly caused by the mismatch between the fuel mass injected per cycle and the instantaneous engine speed. Therefore, an optimized control strategy was put forward, namely, the engine starts with high fuel mass injection in the first several cycles and then decreases step by step during the transitional period until it operates at idle condition. This strategy was validated to decrease significantly the misfire cycles.
Technical Paper

Improving Light Bus Handling and Stability by Anti-roll Bar and Bushing Adjustment

2015-03-10
2015-01-0026
In order to improve the handling and stability of a light bus at high speed, a virtual model was established in Adams-Car and its anti-roll bar and bushing parameters were virtually optimized. The tyre mechanical characteristics were firstly tested by using a plate-type tyre tester and the Magic Formula parameters of the tyre were obtained. Then the virtual bus model's handling performance were studied by the simulation of central steering test and steady static circular test. An optimal matching method was put forward. By using genetic algorithm to conduct optimization, the optimised parameters were obtained. After that the anti-roll bar and bushing samples were respectively manufactured. At last, the comparative trials were performed in an automotive proving ground, and the subjective evaluation of the light bus's handling and stability was taken by three specialized assessors.
X