Refine Your Search

Topic

Search Results

Technical Paper

Active Damping Control of Torsional Vibration in a Diesel Hybrid Powertrain

2019-12-19
2019-01-2342
This paper has designed a real time control algorithm to use ISG motor actively compensate the torque ripple produced by the engine, to reduce torsional vibration. This paper consists of 3 parts. In the first section, this paper has introduced the research object and its modification for experiments. Then the development of control strategy is presented. The engine dynamic model is built, and real-time control with a feedforward unit and a feedback unit is derived. Encoder and cylinder pressure is used for engine torque estimator. Then the ISG motor output the counter-waveform to make the overall output smooth. In order to verify the effectiveness of the control strategy, the final section has established a test bench, where two experiments are carried out. One of the experimental conditions is to set the engine at a constant operating point, while the other is to crank the engine from 0 rpm to idle speed with ISG motor.
Technical Paper

An Elementary Simulation of Vibration Isolation Characteristics of Hydraulically Damped Rubber Mount of Car Engine

2001-04-30
2001-01-1453
Hydraulically damped rubber engine mounts (HDM) are an effective means of providing sufficient isolation from engine vibration while also providing significant damping to control the rigid body motions of the engine during normal driving conditions. This results in a system which exhibits a high degree of non-linearity in terms of both frequency and amplitude. The numerical simulation of vibration isolation characteristics of HDM is difficult due to the fluid-structure interaction between the main supporting rubber and fluid in chambers, the nonlinear material properties, the large deformation of rubber parts, structure contact problems among the inner parts, and the turbulent flow in the inertia track. In this paper an integrated numerical simulation analysis based on structural FEM and a lumped-parameter model of HDM is carried out.
Technical Paper

Analysis of Energy Consumption on Typical Main Cylinder Booster Based Brake-by-Wire System

2016-09-18
2016-01-1955
The traditional vacuum booster is gradually replaced by Brake-by-Wire system (BBW) in modern passenger car, especially Electric Vehicle (EV). Some mechanical and hydraulic components are replaced by electronic components in Brake-by-Wire system. Using BBW system in modern passenger vehicles can not only improve the automotive safety performance, reliability and stability, but also promote vehicle maneuverability, comfort, fuel economy and environmental protection. Although vehicle's braking performance is greatly improved by using BBW, the system will inevitably consume some energy of the vehicle power supply, thus introducing unexpected drawback in comparison with the traditional vacuum assist braking system, since it doesn't need any electric power. Therefore, the analysis of energy consumption on typical main cylinder booster based BBW system under typical driving cycles will contribute to advanced design of current advanced braking system.
Technical Paper

Braking Force Identification of EMB Using Recursive Least-squares Method and Disturbance Observer Iteratively

2018-04-03
2018-01-1381
An identification method using recursive least-squares method with moving data window and reduced-order disturbance observer iteratively is proposed in this paper to identify fast time-varying braking force in the electronic mechanical braking system (EMB). For the type of EMB which generates braking force by balls screw and motor mounted beside wheel, the actuator will go rapidly to eliminate clearance at beginning of braking process by means of raising the braking response speed, and at the same time, increasing the motor output torque which might be far larger than required. The proposed identification method is able to identify the point of contact between the brake pads and the disk in time by identifying the change of break force, and the torque of motor will be changed in time to reduce the braking force overshoot so that brake locking is avoided.
Journal Article

Cold and Warm Start Characteristics using HVO and RME Blends in a V6 Diesel Engine

2013-04-08
2013-01-1306
The first several cycles determine the quality of an engine start. Low temperatures and air/fuel ratio cause incomplete combustion of the fuel. This can lead to dramatic increases in HC and PM emissions. In order to meet Euro V legislation requirements which have stricter cold start emission levels, it is critical to study the characteristics of cold and warm starting of engines in order to develop an optimized operation. The NO and THC emissions were measured by fast CLD and Fast FID gas analyzers respectively and PM in both nucleation and accumulation modes were measured by DMS500. The coolant temperature was controlled in order to guarantee the experiment repeatability. The results show that at cold start using RME60 produced higher NO and lower THC than the other tested fuels while combustion of HVO60 produced a similar level of NO but lower THC compared with mineral diesel. Meanwhile, the nucleation mode of mineral diesel was similar to RME60 but higher than HVO60.
Technical Paper

Control System Design for Variable Nozzle Turbocharger

2009-06-11
2009-01-1668
The electronic control system of the variable nozzle turbocharger (VNT) was designed. The actuator is the electro-hydraulic servo proportional solenoid. The signals of the engine pedal position sensor, the engine speed sensor, the boost pressure sensor, the intake air temperature sensor, and the ambient pressure sensor are sampled and filtered. The engine working condition is estimated. The control algorithm was designed as the closed-loop feedback digital PI control together with the open-loop feed forward control. The gain-scheduled PI control method is applied to improve the robustness. The control system was calibrated at the turbocharger test bench and the engine test bench. The results indicate the designed control system has good performance for the boost pressure control under the steady and transient conditions.
Technical Paper

Coordinating Control Oriented Research on Algorithm of Engine Torque Estimation for Parallel Hybrid Electric Powertrain System

2004-03-08
2004-01-0424
The internal combustion engine and motor should be controlled coordinately to meet the demand of smooth power transfer and good drivability especially during transient conditions for parallel hybrid powertrain system. This paper presents the essential technology of how to estimate the engine torque by the measurement and processing of instantaneous crankshaft speed. One multi-injection gasoline engine and one turbocharged diesel engine are selected to manifest the algorithm of engine torque estimation and the experiments show fairly good results for both engines. Consequently an engine torque sensor can be easily calibrated and applied to feedback engine torque in coordinating control.
Technical Paper

Determination of Aeration of Oil in High Pressure Chamber of Hydraulic Lash Adjuster in Valve Train

1999-03-01
1999-01-0646
Use of a hydraulic lash adjuster (HLA) in the valve train has some problems as well as several advantages. One of the problems is less stiffness of valve train, which may be further reduced when aeration of the oil in the oil circuit occurs. The much lower stiffness will lead to malfunction, noise and damage with the valve train. So the aeration of oil in HLA high pressure chamber must be considered in modeling and simulation of the valve train. Since air dissolved capacity in the oil varies with pressure, aeration (undissolved air content) in the high pressure chamber is different from that in the oil circuit. So far, only the air content in the oil circuit has been measured, and few reports have been found on determining the aeration in HLA of an operating valve train. Based on knowledge that HLA collapse is caused by compressibility and leakage of oil, a method of determining the aeration of the oil in the high pressure chamber is introduced.
Technical Paper

Development of the Main Controller of Compressed Natural Gas Engine Based on the 32-Digit PowerPC561

2008-06-23
2008-01-1738
To realize the precise control of injection and ignition of compressed natural gas engine, the 32-Digit PowerPC561 was selected as the single-chip microcomputer for the compressed natural gas engine. The signal processing module, controller module and power driver module of the engine control system were introduced successively. In the injection valve drive circuit, a new design method realized the ‘Peak&Hold’ drive current wave shape, which reduced the software work of injection development. In the ignition module circuit, the feedback of the time of ignition persistence and preliminary coil close period were successfully realized. The Engine Control Unit (ECU) has flexible control functions, which fulfill the requirements of engine control system.
Technical Paper

Dynamic Characteristic Analysis of a Hydraulic Engine Mount with Lumped Model Based on Finite Element Analysis

2003-05-05
2003-01-1462
Hydraulic Engine Mount (HEM) is now widely used as a highly effective vibration isolator in automotive powertrain. A lumped parameter model is a traditional model for modeling the dynamic characteristics of HEM, in which the system parameters are usually obtained by experiments. In this paper, Computational Fluid Dynamics (CFD) method and nonlinear Finite Element Analysis (FEA) are used to determine the system parameters. A Fluid Structure Interaction (FSI) FEA technique is used to estimate the parameters of volumetric compliances, equivalent piston area, inertia and resistance of the fluid in the inertia track and decoupler of a HEM. A nonlinear FEA method is applied to determine the dynamic stiffness of rubber spring of the HEM. The system parameters predicated by FEA are compared favorably with experimental data and/or analytical solutions.
Journal Article

Experimental Investigation of the Mechanical Behavior of Aluminum Adhesive Joints under Mixed-Mode Loading Conditions

2018-04-03
2018-01-0105
In recent years, structural adhesives have rapidly become the preferred alternative to resistance spot welding in fabricating stronger, lighter aluminum connections. Connections inevitably undergo and must withstand complex quasi-static and/or dynamic loads during their service life. Therefore, understanding how loading conditions affect the mechanical behavior of adhesive joints is vital to their design and the advancement of structural safety. Quasi-static and dynamic tests are performed to analyze both the strength and failure modes of aluminum 6062 substrates bonded by an adhesive (Darbond EP-1506) for an array of loading directions. An Arcan test device, which enables application of mixed-mode loads ranging from pure peel (mode I) to pure shear (mode II) to the adhesive layer, is employed in quasi-static testing. A self-designed medium-speed test machine is utilized to perform dynamic testing.
Technical Paper

Glow Plug Assisted Compression Ignition (GA-CI) in Cold Conditions

2017-10-08
2017-01-2288
Low temperature combustion (LTC) is an advanced combustion mode, which can achieve low emissions of NOx and PM simultaneously, and keep relatively high thermal efficiency at the same time. However, one of the major challenges for LTC is the cold condition. In cold conditions, stable compression ignition is hard to realize, while thermal efficiency and emissions deteriorate, especially for gasoline or fuel with high octane number. This study presents using pressure sensor glow plugs (PSG) to realize Glow plug assisted compression ignition (GA-CI) at cold conditions. Further, a glow plug control unit (GPCU) is developed, a closed-loop power feedback control algorithm is introduced based on GPCU. In the experiment, engine coolant temperature is swept. Experimental results show that GA-CI has earlier combustion phases, larger combustion duration and higher in-cylinder pressure. And misfire is avoided, cycle-to-cycle variations are greatly reduced.
Technical Paper

Heat Generation Mechanism and Failure Analysis of Shock Absorber

2015-04-14
2015-01-0607
This paper proposes a theoretical model to interpret the heat generation mechanism and thermal failure of shock absorber. For a common structure of double-tube shock absorber, all frictions between two contacting components of shock absorber are calculated particularly. The heat generation mechanism and heat distribution can be explained with the theoretical model. Thermal failure is a recurrent malfunction for traditional shock absorbers, which leads to shorten the service lives of vehicle components. Heat generation experiments are accomplished to validate the thermal degeneration of shock absorber. So this study is meaningful to develop a new system of vibration attenuation with satisfying reliability, which is essential to improve the riding comfort and handling stability of vehicles.
Journal Article

High Speed Imaging Study on the Spray Characteristics of Dieseline at Elevated Temperatures and Back Pressures

2014-04-01
2014-01-1415
Dieseline combustion as a concept combines the advantages of gasoline and diesel by offline or online blending the two fuels. Dieseline has become an attractive new compression ignition combustion concept in recent years and furthermore an approach to a full-boiling-range fuel. High speed imaging with near-parallel backlit light was used to investigate the spray characteristics of dieseline and pure fuels with a common rail diesel injection system in a constant volume vessel. The results were acquired at different blend ratios, and at different temperatures and back pressures at an injection pressure of 100MPa. The penetrations and the evaporation states were compared with those of gasoline and diesel. The spray profile was analyzed in both area and shape with statistical methods. The effect of gasoline percentage on the evaporation in the fuel spray was evaluated.
Journal Article

Impact of Particle Characteristics and Engine Conditions on Deposit-Induced Pre-Ignition and Superknock in Turbocharged Gasoline Engines

2017-10-08
2017-01-2345
Low Speed Pre-Ignition (LSPI), also referred to as superknock or mega-knock is an undesirable turbocharged engine combustion phenomenon limiting fuel economy, drivability, emissions and durability performance. Numerous researchers have previously reported that the frequency of Superknock is sensitive to engine oil and fuel composition as well as engine conditions in controlled laboratory and engine-based studies. Recent studies by Toyota and Tsinghua University have demonstrated that controlled induction of particles into the combustion chamber can induce pre-ignition and superknock. Afton and Tsinghua recently developed a multi-physics approach which was able to realistically model all of the elementary processes known to be involved in deposit induced pre-ignition. The approach was able to successfully simulate deposit induced pre-ignition at conditions where the phenomenon has been experimentally observed.
Journal Article

Improved Performance Prediction Model for Turbocharger Compressor

2008-06-23
2008-01-1690
In order to improve centrifugal compressor performance predictive capability, an improved recirculation loss model in two-zone modeling system is presented in this paper. The new loss model correlates Reynolds number of the impeller with the recirculation loss. Performance prediction by the improved model is carried out on two turbochargers with different sizes based on COMPAL mode of the code Concepts. The result shows that predictive performance by improved model is in high accordance with experimental measurement. On the other hand, compared with the larger size compressor, the small one has a performance which is more likely to be influenced by Reynolds number.
Technical Paper

Improving Combustion and Emission Characteristics in Heavy-Duty Natural-Gas Engine by Using Pistons Enhancing Turbulence

2018-09-10
2018-01-1685
Compressed Natural Gas (CNG), because of its low cost, high H/C ratio, and high octane number, has great potential in automotive industry, especially for heavy-duty commercial vehicles. However, relative slow flame speed of natural gas leads to long combustion duration and low thermal efficiency and tends to cause knock combustion at high load, which will aggravate engine thermal load and reliability. Enhancing turbulence intensity in combustion chamber is an effective way to accelerate flame propagation speed and improve combustion performance. In this study, the flow simulations of several piston bowls with different inner-convex forms were carried out using three-dimensional computational fluid dynamics (3D-CFD) software CONVERGE. The numerical results showed the piston bowls with inner-convex could disturb the charge swirl motion and enhance turbulence of different intensity. A hexagram geometry bowl was proved to have the best function in strengthening turbulence intensity.
Technical Paper

Influence of Mass Distribution of Battery and Occupant on Crash Response of Small Lightweight Electric Vehicle

2015-04-14
2015-01-0575
Small lightweight electric vehicle (SLEV) is an approach for compensating low energy density of the current battery. However, small lightweight vehicle presents technical challenges to crash safety design. One issue is that mass of battery pack and occupants is a significant portion of vehicle's total weight, and therefore, the mass distribution has great influence on crash response. This paper presents a parametric analysis using finite element modeling. We first build LS-DYNA model of a two-seater SLEV with curb weight of 600 kg. The model has no complex components and can provide reasonable crash pulses under full frontal rigid barrier crash loading and offset deformable barrier (ODB) crash loading. For given mass of battery pack and one occupant (the driver), different battery layouts, representing different combinations of center of gravity and moment of inertia of the whole vehicle, are analyzed for their influences on the crash responses under the two frontal crash loadings.
Technical Paper

Integrated System Simulation for Turbocharged IC Engines

2008-06-23
2008-01-1640
An integrated simulation platform for turbocharged internal combustion engines has been developed. Multi-dimensional computational fluid dynamic (CFD) codes are integrated into the system to model the turbocharging circuit, gas circuit, in-cylinder circuit, coolant and oil circuits. As the turbocharger is a critical factor for the IC engine, a turbocharger through-flow model based on mass, momentum, and energy conservation equations has been developed and added in the integrated platform. Compared with the traditional MAP method, the through-flow model can solve the problems of transient matching and lack of numerous experimental maps during the pre-prototype engine design. Partial systems in the integrated platform, such as the in-cylinder flow and combustion circuit, can be modeled by 3-D CFD codes for the investigation of the detailed flow patterns.
Journal Article

Investigation of Flow Structure in a Turbocharger Turbine under Pulsating Flow Conditions

2008-06-23
2008-01-1691
A three-dimensional numerical investigation into aerodynamic feature of the turbocharger turbine under pulsating flow conditions is conducted in this paper. Dual time stepping approach is applied to solve the unsteady Navier-Stokes equations, while the Jameson central scheme is brought in for spatial discretization, and Spalart-Allmaras turbulence model is employed in order to get good viscous resolution, accuracy and computing efficiency. The quasi-steady and unsteady performance of the turbine is given and compared. Five blade passage cross sections are chosen to analyze the structure of the secondary flow at 4 key instants. The developments of different vortex, especially the tip leakage vortex, passage vortex are discussed. The results have shown that the unsteady performance deviates substantially from quasi-steady performance, and the secondary flow structure varies tremendously under the pulsating flow conditions.
X