Refine Your Search

Search Results

Viewing 1 of 1
Technical Paper

Study of Turbulent Entrainment Quasi-Dimensional Combustion Model for HCNG Engines with Variable Ignition Timings

Presently, urban transportation highly depends on the fossil fuels, but its rapid fluctuating economic issues and environmental consequences impose the variegation of energy sources. Hydrogen enriched compressed natural gas (HCNG) engines offer the potential of higher brake thermal efficiency with low emissions, which also satisfies the strict pollutant emission standards. The two-zone turbulent entrainment quasi-dimensional combustion model is developed to predict the combustion process of spark-ignited hydrogen enriched compressed natural gas-fueled engines. The fundamentals of thermodynamic process, turbulent flame propagation model and other sub-models like laminar burning velocity, adiabatic temperature and ignition lag model are introduced for the better accuracy. The experiments have been conducted for three different fuels; pure CNG, 20% HCNG, and 40% HCNG blends under MAP of 105 kPa for various excess air ratios (λ) and ignition timing (θi).