Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Braking Force Identification of EMB Using Recursive Least-squares Method and Disturbance Observer Iteratively

2018-04-03
2018-01-1381
An identification method using recursive least-squares method with moving data window and reduced-order disturbance observer iteratively is proposed in this paper to identify fast time-varying braking force in the electronic mechanical braking system (EMB). For the type of EMB which generates braking force by balls screw and motor mounted beside wheel, the actuator will go rapidly to eliminate clearance at beginning of braking process by means of raising the braking response speed, and at the same time, increasing the motor output torque which might be far larger than required. The proposed identification method is able to identify the point of contact between the brake pads and the disk in time by identifying the change of break force, and the torque of motor will be changed in time to reduce the braking force overshoot so that brake locking is avoided.
Technical Paper

Modelling and Simulation of a Magnetorheological Fluid Damper with Multi-Accumulator during Mode Shifting

2019-04-02
2019-01-0856
In a monotube magnetorheological fluid damper (MRFD), there usually exists a compensation chamber with designated initial gas pressure. This enclosed compensation chamber works as an air spring to some degree to provide force to the working piston. In this work, in order to extend the external damping force range and improve the controlling efficiency, a structure of MRFD with three additional accumulators is proposed. These additional accumulators are connected to the atmosphere through an air pump and the compensation chamber with a barometric valve. The external damping force range thus can be rapidly adjusted through mode shifting with this configuration. A mathematical model of this damper with coupled effects between the air and the magnetorheological fluid (MRF) is developed. Comparing the bench tests results with some simulation outcomes, the simulation model of this MRFD is validated.
X