Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

A Study of LPG Lean Burn for a Small SI Engine

2002-10-21
2002-01-2844
This paper presents a study of LPG lean burn in a motorcycle SI engine. The lean burn limits are compared by several ways. The relations of lean burn limit with the parameters, such as engine speed, compression ratio and advanced spark ignition etc. are tested. The experimental results show that larger throttle opening, lower engine speed, earlier spark ignition timing, larger electrode gap and higher compression ratio will extend the lean burn limit of LPG. The emission of a LPG engine, especially on NOx emission, can be significantly reduced by means of the lean burn technology.
Technical Paper

Active Damping Control of Torsional Vibration in a Diesel Hybrid Powertrain

2019-12-19
2019-01-2342
This paper has designed a real time control algorithm to use ISG motor actively compensate the torque ripple produced by the engine, to reduce torsional vibration. This paper consists of 3 parts. In the first section, this paper has introduced the research object and its modification for experiments. Then the development of control strategy is presented. The engine dynamic model is built, and real-time control with a feedforward unit and a feedback unit is derived. Encoder and cylinder pressure is used for engine torque estimator. Then the ISG motor output the counter-waveform to make the overall output smooth. In order to verify the effectiveness of the control strategy, the final section has established a test bench, where two experiments are carried out. One of the experimental conditions is to set the engine at a constant operating point, while the other is to crank the engine from 0 rpm to idle speed with ISG motor.
Technical Paper

An Elementary Simulation of Vibration Isolation Characteristics of Hydraulically Damped Rubber Mount of Car Engine

2001-04-30
2001-01-1453
Hydraulically damped rubber engine mounts (HDM) are an effective means of providing sufficient isolation from engine vibration while also providing significant damping to control the rigid body motions of the engine during normal driving conditions. This results in a system which exhibits a high degree of non-linearity in terms of both frequency and amplitude. The numerical simulation of vibration isolation characteristics of HDM is difficult due to the fluid-structure interaction between the main supporting rubber and fluid in chambers, the nonlinear material properties, the large deformation of rubber parts, structure contact problems among the inner parts, and the turbulent flow in the inertia track. In this paper an integrated numerical simulation analysis based on structural FEM and a lumped-parameter model of HDM is carried out.
Technical Paper

Analysis of Energy Consumption on Typical Main Cylinder Booster Based Brake-by-Wire System

2016-09-18
2016-01-1955
The traditional vacuum booster is gradually replaced by Brake-by-Wire system (BBW) in modern passenger car, especially Electric Vehicle (EV). Some mechanical and hydraulic components are replaced by electronic components in Brake-by-Wire system. Using BBW system in modern passenger vehicles can not only improve the automotive safety performance, reliability and stability, but also promote vehicle maneuverability, comfort, fuel economy and environmental protection. Although vehicle's braking performance is greatly improved by using BBW, the system will inevitably consume some energy of the vehicle power supply, thus introducing unexpected drawback in comparison with the traditional vacuum assist braking system, since it doesn't need any electric power. Therefore, the analysis of energy consumption on typical main cylinder booster based BBW system under typical driving cycles will contribute to advanced design of current advanced braking system.
Technical Paper

Automobile Interior Noise Prediction Based on Energy Finite Element Method

2011-04-12
2011-01-0507
For the purpose of predicting the interior noise of a passenger automobile at middle and high frequency, an energy finite element analysis (EFEA) model of the automobile was created using EFEA method. The excitations including engine mount excitation and road excitation were measured by road experiment at a speed of 120 km/h. The sound excitation was measured in a semi-anechoic chamber. And the wind excitation was calculated utilizing numeric computation method of computational fluid dynamics (CFD). The sound pressure level (SPL) and energy density contours of the interior acoustic cavity of the automobile were presented at 2000 Hz. Meanwhile, the flexural energy density and flexural velocity of body plates were calculated. The SPL of interior noise was predicted and compared with the corresponding value of experiment.
Journal Article

Cold and Warm Start Characteristics using HVO and RME Blends in a V6 Diesel Engine

2013-04-08
2013-01-1306
The first several cycles determine the quality of an engine start. Low temperatures and air/fuel ratio cause incomplete combustion of the fuel. This can lead to dramatic increases in HC and PM emissions. In order to meet Euro V legislation requirements which have stricter cold start emission levels, it is critical to study the characteristics of cold and warm starting of engines in order to develop an optimized operation. The NO and THC emissions were measured by fast CLD and Fast FID gas analyzers respectively and PM in both nucleation and accumulation modes were measured by DMS500. The coolant temperature was controlled in order to guarantee the experiment repeatability. The results show that at cold start using RME60 produced higher NO and lower THC than the other tested fuels while combustion of HVO60 produced a similar level of NO but lower THC compared with mineral diesel. Meanwhile, the nucleation mode of mineral diesel was similar to RME60 but higher than HVO60.
Technical Paper

Combustion and Emission Characteristics of an Ammonia-Hydrogen Engine under Passive- and Active-Jet Ignition

2024-04-09
2024-01-2109
In the context of carbon neutrality, ammonia is considered a zero-carbon fuel with potential applications in the transportation sector. However, its high ignition energy, low flame speed, and high natural temperature, indicative of low reactivity, make it challenging to be applied as a sole fuel in engines. In such a scenario, the use of another zero-carbon and highly reactive fuel, hydrogen, becomes necessary to enhance the combustion of ammonia. Furthermore, jet ignition, a method known for improving engine combustion performance, may also hold potential for enhancing the combustion performance of ammonia engines. To explore the applicability of jet ignition in engines, this study conducted experimental research on a single-cylinder engine. Two ignition methods were employed: passive jet ignition of premixed ammonia-hydrogen at a compression ratio of 11.5, and active jet ignition of pure ammonia using hydrogen jet flame at a compression ratio of 17.3.
Technical Paper

Combustion and Emissions Characteristics of a Small Spark-Ignited LPG Engine

2002-05-06
2002-01-1738
This paper presents an experimental study of the emission characteristics of a small Spark-Ignited, LPG engine. A single cylinder, four-stroke, water-cooled, 125cc SI engine for motorcycle is modified for using LPG fuel. The power output of LPG is above 95% power output of gasoline. The emission characteristics of LPG are compared with the gasoline. The test result shows that LPG for small SI engine will help to reduce the emission level of motorcycles. The HC and CO emission level can be reduced greatly, but NOx emissions are increased. The emission of motorcycle using LPG shows the potential to meet the more strict regulation.
Technical Paper

Combustion and Emissions of Ethanol Fuel (E100) in a Small SI Engine

2003-10-27
2003-01-3262
An air-cooled, four-stroke, 125 cc electronic gasoline fuel injection SI engine for motorcycles is altered to burn ethanol fuel. The effects of nozzle orifice size, fuel injection duration, spark timing and the excess air/ fuel ratio on engine power output, fuel and energy consumptions and engine exhaust emission levels are studied on an engine test bed. The results show that the maximum engine power output is increased by 5.4% and the maximum torque output is increased by 1.9% with the ethanol fuel in comparison with the baseline. At full load and 7000 r/min, HC emission is decreased by 38% and CO emission is decreased 46% on average over the whole engine speed range. However, NOx levels are increased to meet the maximum power output. The experiments of the spark timing show that the levels of HC and NOx emission are decreased markedly by the delay of spark timing.
Technical Paper

Control System Design for Variable Nozzle Turbocharger

2009-06-11
2009-01-1668
The electronic control system of the variable nozzle turbocharger (VNT) was designed. The actuator is the electro-hydraulic servo proportional solenoid. The signals of the engine pedal position sensor, the engine speed sensor, the boost pressure sensor, the intake air temperature sensor, and the ambient pressure sensor are sampled and filtered. The engine working condition is estimated. The control algorithm was designed as the closed-loop feedback digital PI control together with the open-loop feed forward control. The gain-scheduled PI control method is applied to improve the robustness. The control system was calibrated at the turbocharger test bench and the engine test bench. The results indicate the designed control system has good performance for the boost pressure control under the steady and transient conditions.
Technical Paper

Coordinating Control Oriented Research on Algorithm of Engine Torque Estimation for Parallel Hybrid Electric Powertrain System

2004-03-08
2004-01-0424
The internal combustion engine and motor should be controlled coordinately to meet the demand of smooth power transfer and good drivability especially during transient conditions for parallel hybrid powertrain system. This paper presents the essential technology of how to estimate the engine torque by the measurement and processing of instantaneous crankshaft speed. One multi-injection gasoline engine and one turbocharged diesel engine are selected to manifest the algorithm of engine torque estimation and the experiments show fairly good results for both engines. Consequently an engine torque sensor can be easily calibrated and applied to feedback engine torque in coordinating control.
Technical Paper

Determination of Aeration of Oil in High Pressure Chamber of Hydraulic Lash Adjuster in Valve Train

1999-03-01
1999-01-0646
Use of a hydraulic lash adjuster (HLA) in the valve train has some problems as well as several advantages. One of the problems is less stiffness of valve train, which may be further reduced when aeration of the oil in the oil circuit occurs. The much lower stiffness will lead to malfunction, noise and damage with the valve train. So the aeration of oil in HLA high pressure chamber must be considered in modeling and simulation of the valve train. Since air dissolved capacity in the oil varies with pressure, aeration (undissolved air content) in the high pressure chamber is different from that in the oil circuit. So far, only the air content in the oil circuit has been measured, and few reports have been found on determining the aeration in HLA of an operating valve train. Based on knowledge that HLA collapse is caused by compressibility and leakage of oil, a method of determining the aeration of the oil in the high pressure chamber is introduced.
Technical Paper

Development of Model Based Closed Loop Control Strategy of SCR System for Heavy-Duty Diesel Engines

2017-10-08
2017-01-2383
Urea selective catalytic reduction (SCR) is a key technology for heavy-duty diesel engines to meet the increasingly stringent nitric oxides (NOx) emission limits of regulations. The urea water solution injection control is critical for urea SCR systems to achieve high NOx conversion efficiency while keeping the ammonia (NH3) slip at a required level. In general, an open loop control strategy is sufficient for SCR systems to satisfy Euro IV and Euro V NOx emission limits. However, for Euro VI emission regulation, advanced control strategy is essential for SCR systems due to its more tightened NOx emission limit and more severe test procedure compared to Euro IV and Euro V. This work proposed an approach to achieve model based closed loop control for SCR systems to meet the Euro VI NOx emission limits. A chemical kinetic model of the SCR catalyst was established and validated to estimate the ammonia storage in the SCR catalyst.
Technical Paper

Development of Model Predictive Control Strategy of SCR System for Heavy-Duty Diesel Engines with a One-State Control-Oriented SCR Model

2018-09-10
2018-01-1763
Urea-based selective catalytic reduction (SCR) of nitric oxides (NOx) is a key technology for heavy-duty diesel engines to achieve the increasingly stringent NOx emission standards. The aqueous urea injection control is critical for urea-SCR systems in order to achieve high NOx conversion efficiency while restricting the tailpipe ammonia (NH3) slip. For Euro VI emission regulation, an advanced control strategy is essential for SCR systems since its NOx emission limits are tighter and test procedure are more stringent compared to Euro IV and Euro V. The complex chemical kinetics of the SCR process has motivated model-based control design approaches. However, the model is too complex to allow real-time implementation. Therefore, it is very important to have a reduced order model for SCR control system.
Technical Paper

Development of the Main Controller of Compressed Natural Gas Engine Based on the 32-Digit PowerPC561

2008-06-23
2008-01-1738
To realize the precise control of injection and ignition of compressed natural gas engine, the 32-Digit PowerPC561 was selected as the single-chip microcomputer for the compressed natural gas engine. The signal processing module, controller module and power driver module of the engine control system were introduced successively. In the injection valve drive circuit, a new design method realized the ‘Peak&Hold’ drive current wave shape, which reduced the software work of injection development. In the ignition module circuit, the feedback of the time of ignition persistence and preliminary coil close period were successfully realized. The Engine Control Unit (ECU) has flexible control functions, which fulfill the requirements of engine control system.
Technical Paper

Dynamic Characteristic Analysis of a Hydraulic Engine Mount with Lumped Model Based on Finite Element Analysis

2003-05-05
2003-01-1462
Hydraulic Engine Mount (HEM) is now widely used as a highly effective vibration isolator in automotive powertrain. A lumped parameter model is a traditional model for modeling the dynamic characteristics of HEM, in which the system parameters are usually obtained by experiments. In this paper, Computational Fluid Dynamics (CFD) method and nonlinear Finite Element Analysis (FEA) are used to determine the system parameters. A Fluid Structure Interaction (FSI) FEA technique is used to estimate the parameters of volumetric compliances, equivalent piston area, inertia and resistance of the fluid in the inertia track and decoupler of a HEM. A nonlinear FEA method is applied to determine the dynamic stiffness of rubber spring of the HEM. The system parameters predicated by FEA are compared favorably with experimental data and/or analytical solutions.
Technical Paper

Effect of Ash on Gasoline Particulate Filter Using an Accelerated Ash Loading Method

2018-04-03
2018-01-1258
Gasoline particulate filter (GPF) is considered a suitable solution to meet the increasingly stringent particle number (PN) regulations for both gasoline direct injection (GDI) and multi-port fuel injection (MPI) engines. Generally, GDI engines emit more particulate matter (PM) and PN. In recent years, GDI engines have gained significant market penetration in the automobile industry owing to better fuel economy and drivability. In this study, an accelerated ash loading method was tested by doping lubricating oil into the fuel for a GDI engine. Emission tests were performed at different ash loads with different driving cycles and GPF combinations. The results showed that the GPF could significantly reduce particle emissions to meet the China 6 regulation. With further ash loading, the filtration efficiency increased above 99% and the effects on fuel consumption and backpressure were found to be limited, even with an ash loading of up to 50 g/l.
Technical Paper

Effects of Fuel Injection Characteristics on Heat Release and Emissions in a DI Diesel Engine Operated on DME

2001-09-24
2001-01-3634
In this study, an experimental investigation was conducted using a direct injection single-cylinder diesel engine equipped with a test common rail fuel injection system to clarify how dimethyl ether (DME) injection characteristics affect the heat release and exhaust emissions. For that purpose the common rail fuel injection system (injection pressure: 15 MPa) and injection nozzle (0.55 × 5-holes, 0.70 × 3-holes, same total holes area) have been used for the test. First, to characterize the effect of DME physical properties on the macroscopic spray behavior: injection quantity, injection rate, penetration, cone angle, volume were measured using high-pressure injection chamber (pressure: 4MPa). In order to clarify effects of the injection process on HC, CO, and NOx emissions, as well as the rate of heat release were investigated by single-cylinder engine test. The effects of the injection rate and swirl ratio on exhaust emissions and heat release were also investigated.
Journal Article

Experimental Investigation of the Mechanical Behavior of Aluminum Adhesive Joints under Mixed-Mode Loading Conditions

2018-04-03
2018-01-0105
In recent years, structural adhesives have rapidly become the preferred alternative to resistance spot welding in fabricating stronger, lighter aluminum connections. Connections inevitably undergo and must withstand complex quasi-static and/or dynamic loads during their service life. Therefore, understanding how loading conditions affect the mechanical behavior of adhesive joints is vital to their design and the advancement of structural safety. Quasi-static and dynamic tests are performed to analyze both the strength and failure modes of aluminum 6062 substrates bonded by an adhesive (Darbond EP-1506) for an array of loading directions. An Arcan test device, which enables application of mixed-mode loads ranging from pure peel (mode I) to pure shear (mode II) to the adhesive layer, is employed in quasi-static testing. A self-designed medium-speed test machine is utilized to perform dynamic testing.
Technical Paper

Experimental Study and Numerical Interpretation on the Temperature Field of DPF during Active Regeneration with Hydrocarbon Injection

2018-04-03
2018-01-1257
Diesel particulate filter (DPF) is indispensable for diesel engines to meet the increasingly stringent emission regulations. Both the peak temperature and the maximum temperature gradient of the DPF during active regeneration should be well controlled in order to enhance the reliability and durability of the filter. In this paper, the temperature field of the DPF during active regeneration with hydrocarbon (HC) injection was investigated with engine bench tests and numerical simulation. For the experimental study, 24 thermocouples were inserted into the DPF channels to measure the inner temperature of the filter to capture its temperature field, and the circumferential, axial and radial distribution of the filter temperature was analyzed to understand the DPF temperature field behavior during active regeneration.
X