Refine Your Search



Search Results

Technical Paper

A New Positioning Device Designed for Aircraft Automated Alignment System

Accurate and fast positioning of large aircraft component is of great importance for Automated Alignment System. The Ball joint is a widely-used mechanical device connecting the aircraft component and positioners. However, there are some shortcomings for the device in man-machine engineering, such as the entry state of the ball-head still needs to be confirmed by the workers and then switched to the locking state manually. To solve above problems, a new positioning mechanism is present in this paper, which consists of a ball-head and a ball-socket. The new device is equipped with a monocular vision system, in which a calibrated industrial camera is used to collect the images of the ball-head. And then, the 3-D coordinate of the ball-head center is calculated by a designed algorithm, guiding the positioner to capture the ball-head. Once the ball-head gets into the ball-socket, the pneumatic system will drive the pistons to move to the specified location.
Technical Paper

A New Rotating Wedge Clutch Actuation System

Rotating clutches play an important role in automatic transmissions (AT), dual-clutch transmissions (DCT) and hybrid transmissions. It is very important to continually improve the transmission systems in the areas such as simplifying actuator designs, reducing cost and increasing controllability. A new concept of electrical motor driven actuation using a wedge mechanism, a wedge clutch, demonstrates potential benefits. This wedge clutch has the characteristics of good mechanical advantage, self-reinforcement, and faster and more precise controllability using electrical motor. In this paper, a new rotating wedge clutch is proposed. It presents a challenge since the motor actuator has to be stationary while the clutch piston is rotating. A new mechanism to connect the motor to the wedge piston, including dual-plane bearings and two mechanical ramp linkages, is studied. The design and verification of the physical structure of the actuator are discussed in detail in the paper.
Technical Paper

A Study of Energy Enhanced Multi-Spark Discharge Ignition in a Constant-Volume Combustion Chamber

Multi-spark discharge (MSD) ignition is widely used in high-speed internal combustion engines such as racing cars, motorcycles and outboard motors in attempts to achieve multiple sparks during each ignition. In contrast to transistor coil ignition (TCI) system, MSD system can be greatly shortened the charging time in a very short time. However, when the engine speed becomes higher, the ignition will be faster, electrical energy stored in the ignition system will certainly become less, especially for MSD system. Once the energy released into the spark plug gap can’t be guaranteed sufficiently, ignition will become more difficult, and it will get worse in some harsh environment such as strong turbulence or lean fuel conditions. With these circumstances, the risks of misfire and partial combustion will increase, which can deteriorate the power outputs and exhaust emissions of internal combustion engine.
Technical Paper

A Study of LPG Lean Burn for a Small SI Engine

This paper presents a study of LPG lean burn in a motorcycle SI engine. The lean burn limits are compared by several ways. The relations of lean burn limit with the parameters, such as engine speed, compression ratio and advanced spark ignition etc. are tested. The experimental results show that larger throttle opening, lower engine speed, earlier spark ignition timing, larger electrode gap and higher compression ratio will extend the lean burn limit of LPG. The emission of a LPG engine, especially on NOx emission, can be significantly reduced by means of the lean burn technology.
Technical Paper

An Elementary Simulation of Vibration Isolation Characteristics of Hydraulically Damped Rubber Mount of Car Engine

Hydraulically damped rubber engine mounts (HDM) are an effective means of providing sufficient isolation from engine vibration while also providing significant damping to control the rigid body motions of the engine during normal driving conditions. This results in a system which exhibits a high degree of non-linearity in terms of both frequency and amplitude. The numerical simulation of vibration isolation characteristics of HDM is difficult due to the fluid-structure interaction between the main supporting rubber and fluid in chambers, the nonlinear material properties, the large deformation of rubber parts, structure contact problems among the inner parts, and the turbulent flow in the inertia track. In this paper an integrated numerical simulation analysis based on structural FEM and a lumped-parameter model of HDM is carried out.
Technical Paper

An Experimental Study of the Effects of Coolant Temperature on Particle Emissions from a Dual Injection Gasoline Engine

Euro VI emission standards have set a very strict limitation on particulate matter emissions of Gasoline Direct Injection (GDI) engine. It is difficult for GDI engine to meet the Euro VI PN regulation (6×1011#/km) without a series of complicated after-treatment devices such as Gasoline Particulate Filter (GPF). Previous research shows that GDI vehicles under cold start condition account for more than 50% of both particle number and mass emissions during the entire NEDC driving cycle. Dual Injection Gasoline engine is based on the GDI engine by adding a set of port fuel injection system. The good mixing characteristics of the port fuel injection system can help to reduce the particulate matter emissions of the GDI engine during the cold start condition.
Technical Paper

Analysis of Energy Consumption on Typical Main Cylinder Booster Based Brake-by-Wire System

The traditional vacuum booster is gradually replaced by Brake-by-Wire system (BBW) in modern passenger car, especially Electric Vehicle (EV). Some mechanical and hydraulic components are replaced by electronic components in Brake-by-Wire system. Using BBW system in modern passenger vehicles can not only improve the automotive safety performance, reliability and stability, but also promote vehicle maneuverability, comfort, fuel economy and environmental protection. Although vehicle's braking performance is greatly improved by using BBW, the system will inevitably consume some energy of the vehicle power supply, thus introducing unexpected drawback in comparison with the traditional vacuum assist braking system, since it doesn't need any electric power. Therefore, the analysis of energy consumption on typical main cylinder booster based BBW system under typical driving cycles will contribute to advanced design of current advanced braking system.
Technical Paper

Analysis of Thermal Efficiency Improvement of a Highly Boosted, High Compression Ratio, Direct-Injection Gasoline Engine with LIVC and EIVC at Partial and Full Loads

The improvement mechanism of fuel consumption at partial and full loads of a boosted direction-injection gasoline engine with the elevated geometrical compression ratio and Miller cycle by either early or late intake valve closing (EIVC or LIVC) are analyzed based on the first law of thermodynamics and one dimensional engine simulation. An increase in geometric compression ratio increases the theoretical thermal efficiency for all the operating loads, but deteriorates the fuel economy at full loads, owing primarily to the full-load knock limit. Use of Miller cycle improves the fuel economy for both the partial and full load operations by reducing the pumping loss and optimizing the combustion phasing, respectively. A comparison between EIVC and LIVC on the influencing factors on the thermal efficiency at the partial load shows that EIVC leads to higher mechanical efficiency and less heat transfer loss than LIVC, and hence its efficiency improvement is superior over LIVC.
Technical Paper

Application of the Newly Developed KLSA Model into Optimizing the Compression Ratio of a Turbocharged SI Engine with Cooled EGR

Owing to the stochastic nature of engine knock, determination of the knock limited spark angle (KLSA) is difficult in engine cycle simulation. Therefore, the state-of-the-art knock modeling is mostly limited to either merely predicting knock onset (i.e. auto-ignition of end gas) or combining a simple unburned mass fraction (UMF) model representative of knock intensity (KI). In this study, a newly developed KLSA model, which takes both predictions of knock onset and intensity into account, is firstly introduced. Multiple variables including the excess air ratio, EGR ratio, cylinder pressure and the end gas temperature are included in the knock onset model. Based on the auto-ignition theory of hot spots in end gas, both the energy density and heat release rate in hot spots are taken into consideration in the KI model.
Technical Paper

Automobile Interior Noise Prediction Based on Energy Finite Element Method

For the purpose of predicting the interior noise of a passenger automobile at middle and high frequency, an energy finite element analysis (EFEA) model of the automobile was created using EFEA method. The excitations including engine mount excitation and road excitation were measured by road experiment at a speed of 120 km/h. The sound excitation was measured in a semi-anechoic chamber. And the wind excitation was calculated utilizing numeric computation method of computational fluid dynamics (CFD). The sound pressure level (SPL) and energy density contours of the interior acoustic cavity of the automobile were presented at 2000 Hz. Meanwhile, the flexural energy density and flexural velocity of body plates were calculated. The SPL of interior noise was predicted and compared with the corresponding value of experiment.
Journal Article

Cold and Warm Start Characteristics using HVO and RME Blends in a V6 Diesel Engine

The first several cycles determine the quality of an engine start. Low temperatures and air/fuel ratio cause incomplete combustion of the fuel. This can lead to dramatic increases in HC and PM emissions. In order to meet Euro V legislation requirements which have stricter cold start emission levels, it is critical to study the characteristics of cold and warm starting of engines in order to develop an optimized operation. The NO and THC emissions were measured by fast CLD and Fast FID gas analyzers respectively and PM in both nucleation and accumulation modes were measured by DMS500. The coolant temperature was controlled in order to guarantee the experiment repeatability. The results show that at cold start using RME60 produced higher NO and lower THC than the other tested fuels while combustion of HVO60 produced a similar level of NO but lower THC compared with mineral diesel. Meanwhile, the nucleation mode of mineral diesel was similar to RME60 but higher than HVO60.
Technical Paper

Combustion and Emissions Characteristics of a Small Spark-Ignited LPG Engine

This paper presents an experimental study of the emission characteristics of a small Spark-Ignited, LPG engine. A single cylinder, four-stroke, water-cooled, 125cc SI engine for motorcycle is modified for using LPG fuel. The power output of LPG is above 95% power output of gasoline. The emission characteristics of LPG are compared with the gasoline. The test result shows that LPG for small SI engine will help to reduce the emission level of motorcycles. The HC and CO emission level can be reduced greatly, but NOx emissions are increased. The emission of motorcycle using LPG shows the potential to meet the more strict regulation.
Technical Paper

Combustion and Emissions of Ethanol Fuel (E100) in a Small SI Engine

An air-cooled, four-stroke, 125 cc electronic gasoline fuel injection SI engine for motorcycles is altered to burn ethanol fuel. The effects of nozzle orifice size, fuel injection duration, spark timing and the excess air/ fuel ratio on engine power output, fuel and energy consumptions and engine exhaust emission levels are studied on an engine test bed. The results show that the maximum engine power output is increased by 5.4% and the maximum torque output is increased by 1.9% with the ethanol fuel in comparison with the baseline. At full load and 7000 r/min, HC emission is decreased by 38% and CO emission is decreased 46% on average over the whole engine speed range. However, NOx levels are increased to meet the maximum power output. The experiments of the spark timing show that the levels of HC and NOx emission are decreased markedly by the delay of spark timing.
Technical Paper

Control System Design for Variable Nozzle Turbocharger

The electronic control system of the variable nozzle turbocharger (VNT) was designed. The actuator is the electro-hydraulic servo proportional solenoid. The signals of the engine pedal position sensor, the engine speed sensor, the boost pressure sensor, the intake air temperature sensor, and the ambient pressure sensor are sampled and filtered. The engine working condition is estimated. The control algorithm was designed as the closed-loop feedback digital PI control together with the open-loop feed forward control. The gain-scheduled PI control method is applied to improve the robustness. The control system was calibrated at the turbocharger test bench and the engine test bench. The results indicate the designed control system has good performance for the boost pressure control under the steady and transient conditions.
Technical Paper

Coordinating Control Oriented Research on Algorithm of Engine Torque Estimation for Parallel Hybrid Electric Powertrain System

The internal combustion engine and motor should be controlled coordinately to meet the demand of smooth power transfer and good drivability especially during transient conditions for parallel hybrid powertrain system. This paper presents the essential technology of how to estimate the engine torque by the measurement and processing of instantaneous crankshaft speed. One multi-injection gasoline engine and one turbocharged diesel engine are selected to manifest the algorithm of engine torque estimation and the experiments show fairly good results for both engines. Consequently an engine torque sensor can be easily calibrated and applied to feedback engine torque in coordinating control.
Technical Paper

Determination of Aeration of Oil in High Pressure Chamber of Hydraulic Lash Adjuster in Valve Train

Use of a hydraulic lash adjuster (HLA) in the valve train has some problems as well as several advantages. One of the problems is less stiffness of valve train, which may be further reduced when aeration of the oil in the oil circuit occurs. The much lower stiffness will lead to malfunction, noise and damage with the valve train. So the aeration of oil in HLA high pressure chamber must be considered in modeling and simulation of the valve train. Since air dissolved capacity in the oil varies with pressure, aeration (undissolved air content) in the high pressure chamber is different from that in the oil circuit. So far, only the air content in the oil circuit has been measured, and few reports have been found on determining the aeration in HLA of an operating valve train. Based on knowledge that HLA collapse is caused by compressibility and leakage of oil, a method of determining the aeration of the oil in the high pressure chamber is introduced.
Technical Paper

Development of the Main Controller of Compressed Natural Gas Engine Based on the 32-Digit PowerPC561

To realize the precise control of injection and ignition of compressed natural gas engine, the 32-Digit PowerPC561 was selected as the single-chip microcomputer for the compressed natural gas engine. The signal processing module, controller module and power driver module of the engine control system were introduced successively. In the injection valve drive circuit, a new design method realized the ‘Peak&Hold’ drive current wave shape, which reduced the software work of injection development. In the ignition module circuit, the feedback of the time of ignition persistence and preliminary coil close period were successfully realized. The Engine Control Unit (ECU) has flexible control functions, which fulfill the requirements of engine control system.
Technical Paper

Distortion Mapping Correction of In-Cylinder Flow Field Measurements through Optical Liner Using Gaussian Optics Model

Combustion efficiency of internal combustion engine is closely influenced by the air flow pattern in the engine cylinder. Some researchers use high-speed particle image velocimetry to visualize and measure the temporally and spatially resolved in-cylinder velocity flow fields in the optically assessable engine. However, the transparent cylindrical liner makes it difficult to accurately determine the particle displacements inside the cylinder due to the optically distorted path of scattering light from seeding particles through the curved liner. To correct for the distortion-induced error in the seeding particle positions through the optical liner, the distortion mapping function is modeled using the Gaussian optics theory. Two artificial flow patterns with 5 by 5 vectors were made to illustrate the mapping correction. Distortion-induced error of velocity vectors was precisely mapped in six different planes inside the cylinder.
Technical Paper

Dynamic Characteristic Analysis of a Hydraulic Engine Mount with Lumped Model Based on Finite Element Analysis

Hydraulic Engine Mount (HEM) is now widely used as a highly effective vibration isolator in automotive powertrain. A lumped parameter model is a traditional model for modeling the dynamic characteristics of HEM, in which the system parameters are usually obtained by experiments. In this paper, Computational Fluid Dynamics (CFD) method and nonlinear Finite Element Analysis (FEA) are used to determine the system parameters. A Fluid Structure Interaction (FSI) FEA technique is used to estimate the parameters of volumetric compliances, equivalent piston area, inertia and resistance of the fluid in the inertia track and decoupler of a HEM. A nonlinear FEA method is applied to determine the dynamic stiffness of rubber spring of the HEM. The system parameters predicated by FEA are compared favorably with experimental data and/or analytical solutions.
Technical Paper

Effect of High Frequency Acoustic Field on Atomization Behavior of Ethanol and Kerosene

Combustion instability often occurs inside the combustion chamber of aero engine. Fuel atomization and evaporation, one of the controlling processes of combustion rate, is an important mechanism of the combustion instability. To tackle combustion instability, it challenges a deep understanding of the underlying mechanism of fuel atomization and evaporation. In this paper, acoustic field was established to simulate the pressure oscillation. Transient spray images of ethanol and kerosene were recorded using high-speed camera. The obtained images were processed by MATLAB to extract and analyze the related data. Spatial fuel atomization characteristics was analytically examined by multi-threshold image method to analyze the effect of the high frequency acoustic field on the fuel break-up and disintegration. The results show that the half spray cone angle on the side with speaker is suppressed by the presence of the imposed acoustic field compared with the case without speaker.