Refine Your Search

Topic

Search Results

Standard

Aviator's Breathing Oxygen Purity Standard

2023-08-23
CURRENT
AS8010D
This document defines the minimum degree of purity and maximum levels of certain deleterious impurities allowable for aviator's breathing oxygen at the point of manufacture or generation. It covers gaseous, liquid, and chemically generated oxygen, and oxygen supplied by in situ concentration and in situ electrolysis. Different limits are established for oxygen from different sources, in recognition of differences in the ways the oxygen is stored, dispensed, and utilized, taking into account the safety of the user. These limits are not intended to specifically reflect upon the relative capabilities or merits of various technologies. Procurement documents may specify more stringent limits, where required for specific applications. Medical oxygen is not covered by this standard. In the United States, medical oxygen is a prescription drug and complies with the United States Pharmacopoeia (USP).
Standard

Crewmember Demand Oxygen Mask For Transport Category Aircraft

2016-06-09
HISTORICAL
AS8026A
This standard covers oxygen masks and breathing valves used with both panel mounted and mask mounted demand and pressure-demand oxygen regulators. Mask mounted oxygen regulators are covered under other standards, but when the mask mounted regulator incorporates an integral exhalation valve, the performance of this valve shall meet the requirements of this standard.
Standard

Crewmember Demand Oxygen Mask for Transport Category Aircraft

2019-08-14
CURRENT
AS8026B
This standard covers oxygen masks and breathing valves used with both panel mounted and mask mounted demand and pressure-demand oxygen regulators. Mask mounted oxygen regulators are covered under other standards, but when the mask mounted regulator incorporates an integral exhalation valve, the performance of this valve shall meet the requirements of this standard.
Standard

Fuel Versus Oxygen: Evaluations and Considerations

2012-04-12
HISTORICAL
AIR5648
Specific Federal Aviation Regulations (FAR) define oxygen system requirements for an in-flight decompression incident. This AIR addresses the oxygen system requirements for a decompression incident that may occur at any point during a long-range flight, with an emphasis for a decompression at the equal time point (ETP). This AIR identifies fuel and oxygen management contingencies, and presents a possible solution for the most efficient, safe, and optimum flight continuation.
Standard

Fuel Versus Oxygen: Evaluations and Considerations

2018-10-18
CURRENT
AIR5648A
Specific federal aviation regulations (Titled 14 of the United States Code of Federal Regulations, or 14 CFR) define oxygen system requirements for an in-flight decompression incident. This AIR addresses the operational oxygen system requirements for a decompression incident that may occur at any point during a long-range flight, with an emphasis for a decompression at the equal time point (ETP). This AIR identifies fuel and oxygen management contingencies, and presents possible solutions for the efficient, safe, and optimum fuel/oxygen flight continuation. Oxygen management is a concern to all aircraft, such as single engine types that fly above 10 000 feet and use supplemental oxygen. This document provides a method which can help guide users in developing an oxygen solution for their aircraft.
Standard

Glossary of Technical and Physiological Terms Related to Aerospace Oxygen Systems

2012-10-08
HISTORICAL
AIR171D
The scope of this document is to provide a list of specialized terms with their meanings. The glossary will assist the use of other documents related to aircraft oxygen equipment by defining ubiquitous terminology in context of this specialized field. The glossary contains terms of primary importance in the areas of chemistry, equipment, and physiology.
Standard

HIGH PRESSURE OXYGEN SYSTEM FILLER VALVE

1971-07-30
HISTORICAL
AS1225
This AS covers oxygen filler valves for use in aircraft to ensure safe servicing of high pressure oxygen system cylinders. The intent is that the valve shall automatically control the rate of fill such that the temperature rise in the oxygen system caused by compression heating of the gas will be within acceptable limits. In addition, the valve shall have a pressure sensitive closing valve to automatically control the final pressure for a correct amount of oxygen in the system cylinder. The pressure closing level may be manually selected by means of adjustment dials on the valve.
Standard

METABOLIC SIMULATOR TESTING SYSTEMS FOR AVIATION BREATHING EQUIPMENT

1991-04-01
HISTORICAL
ARP4259
This Aerospace Recommended Practice (ARP) describes test equipment and methods used for testing closed cycle or semi closed cycle breathing devices of short duration that are designed to operate with a high partial pressure of oxygen in the breathing circuit. It is intended to supplement ARP1109 and ARP1398 for applications involving closed cycle or semiclosed cycle breathing equipment which may be evaluated to the requirements of AS8031 and/or AS8047.
Standard

MINIMUM STANDARD FOR PORTABLE GASEOUS, OXYGEN EQUIPMENT

1976-02-01
HISTORICAL
AS1046A
This standard is intended to apply to that portable compressed gaseous oxygen equipment used for the administration of supplementary and/or first aid oxygen to one or more occupants of either private or commercial transport aircraft.
Standard

MINIMUM STANDARDS FOR VALVE, HIGH PRESSURE OXYGEN, CYLINDER SHUT OFF, MANUALLY OPERATED

1996-07-01
HISTORICAL
AS1066A
This standard covers all types of manually operated high pressure oxygen, cylinder shut off valves for use in commercial type aircraft. It is intended that the valve shall be attached to a pressure cylinder storing oxygen under pressure of 1800 to 2100 psig at 70 °F. Upon opening the valve, oxygen will be permitted to discharge from the storage cylinder to the valve outlet and thence to other components of the oxygen system. It shall also be possible to recharge the cylinder through the valve.
Standard

MINIMUM STANDARDS FOR VALVE, HIGH PRESSURE OXYGEN, CYLINDER SHUT OFF, MANUALLY OPERATED

1968-12-01
HISTORICAL
AS1066
This standard covers all types of manually operated high pressure oxygen, cylinder shut off valves for use in commercial type aircraft. It is intended that the valve shall be attached to a pressure cylinder storing oxygen under pressure of 1800 to 2100 psig at 70 F. Upon opening the valve, oxygen will be permitted to discharge from the storage cylinder to the valve outlet and thence to other components of the oxygen system. It shall also be possible to recharge the cylinder through the valve.
Standard

MINIMUM STANDARDS FOR VALVE, HIGH PRESSURE OXYGEN, LINE SHUT OFF, MANUALLY OPERATED

1971-07-01
HISTORICAL
AS1214
This standard covers all types of manually operated high pressure oxygen line shut off valves utilizing either metallic or nonmetallic valve seats for use in general and commercial type aircraft. It is intended that the line valve should be installed in a position accessible in flight, when the cylinder mounted oxygen valves are not. The line shutoff valve may also be used optionally in large systems as a maintenance aid where only a portion of the system need be opened up and purged after repair or replacement of one or more parts.
Standard

Minimum Standard for Gaseous Oxygen Pressure Reducers

2020-05-27
CURRENT
AS1248B
This standard applies to pressure reducers for gaseous breathing oxygen systems and for all performance profiles without regard to particular inlet or outlet pressures. Attention is given, however, to construction requirements for reducers with maximum supply pressures to 2250 psig (155 bar) and reduced pressures of 50 to 150 psig (3.4 to 10.5 bar).
X