Refine Your Search

Topic

Search Results

Standard

AIRCRAFT BRAKE TEMPERATURE MONITOR SYSTEMS (BTMS)

1992-06-01
HISTORICAL
AS1145A
This specification covers minimum requirements for brake temperature monitoring equipment whenever used on any type and model of civil aircraft. It shall be the responsibility of the purchaser to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
Standard

AUTOMATIC BRAKING SYSTEMS REQUIREMENTS

1988-06-02
HISTORICAL
ARP1907
This ARP covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
Standard

Aircraft Brake Temperature Measurement

2017-10-26
WIP
ARP6812
This SAE Aerospace Recommended Practice (ARP) covers the functional, design, construction, and test requirements for Brake Temperature Monitoring Systems (BTMS), and sometimes referred to as Brake Temperature Indication Systems (BTIS). The BTMS is limited to aircraft where a dispatch indication and brake temperature indication is required. The scope of this BTMS equipment shall be limited to the 1) brake temperature sensor or indicator, 2) temperature reference measurement, if required, and 3) processing and communication of brake temperature. This recommended practice will not address cockpit ergonomics and aircraft operating procedures.
Standard

Aircraft Brake Temperature Monitor Systems (BTMS)

2016-09-14
CURRENT
AS1145C
This specification covers minimum requirements for brake temperature monitoring equipment whenever used on any type and model of civil aircraft. It shall be the responsibility of the purchaser to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
Standard

Aircraft Brake Temperature Monitor Systems (BTMS)

1998-02-01
HISTORICAL
AS1145B
This specification covers minimum requirements for brake temperature monitoring equipment whenever used on any type and model of civil aircraft. It shall be the responsibility of the purchaser to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
Standard

Assessment of Aircraft Wheel Sealing Systems

2005-07-27
CURRENT
ARP5146
This SAE Aerospace Recommended Practice (ARP) is intended to provide guidance on verifying the integrity of inflation pressure sealing systems of aircraft wheel/tire assemblies.
Standard

Automatic Braking Systems

2009-03-03
HISTORICAL
ARP1907B
This SAE Aerospace Recommended Practice (ARP) covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
Standard

Automatic Braking Systems

2016-01-25
CURRENT
ARP1907C
This SAE Aerospace Recommended Practice (ARP) covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
Standard

Automatic Braking Systems Requirements

2001-12-01
HISTORICAL
ARP1907A
This ARP covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
Standard

BRAKE DYNAMICS

1997-01-01
HISTORICAL
AIR1064C
The landing gear is a complex multi-degree of freedom dynamic system and may encounter vibration problems induced by braking action. The vibratory modes can be induced by several frictional characteristics and brake design features. These should be assessed during the design concept and verified during the development of the hardware. This SAE Aerospace Information Report (AIR) has been prepared by a panel of the A-5A Subcommittee to present an overview of the landing gear system problems associated with aircraft brake dynamics and the approaches to the solution of these problems. In addition, facilities available for test and evaluation are presented and discussed.1
Standard

Braking System Dynamics

2007-09-26
CURRENT
AIR1064D
The aircraft landing gear is a complex multi-degree of freedom dynamic system, and may encounter vibration or dynamic response problems induced by braking action. The vibratory modes can be induced by brake and tire-ground frictional characteristics, antiskid operation, brake design features, landing gear design features, and tire characteristics. The impact of this vibration can range from catastrophic failure of critical system components or entire landing gears, to fatigue of small components, to passenger annoyance. It is therefore important that the vibration is assessed during the design concept phase, and verified during the development and testing phases of the system hardware. This SAE Aerospace Information Report (AIR) has been prepared by a panel of the A-5A Subcommittee to present an overview of the landing gear problems associated with aircraft braking system dynamics, and the approaches to the identification, diagnosis, and solution of these problems.
Standard

Compilation of Freezing Brake Experience and Potential Designs and Operating Procedures to Prevent Its Occurrence

2016-05-24
CURRENT
AIR4762A
This Aerospace Information Report (AIR) describes conditions under which freezing (frozen) brakes can occur and describes operating procedures which have been used to prevent or lessen the severity or probability of brake freezing. This document also identifies design features that some manufacturers implement to minimize the occurrence of freezing brakes. This document is not an Aerospace Recommended Practice (ARP) and therefore does not make recommendations based on a consensus of the industry. However, part of this document’s purpose is to describe the design and operational practices that some are using to minimize the risk of frozen brakes. NOTE: The following information is based upon experience gained across a wide-range of aircraft types and operational profiles, and should NOT take precedence over Aircraft Flight Manual or Flight Operations Procedures.
Standard

Design and Testing of Antiskid Brake Control Systems for Total Aircraft Compatibility

2008-10-20
HISTORICAL
ARP1070C
This document recommends minimum requirements for antiskid brake control to provide total aircraft systems compatibility. Design and operational goals, general theory, and functions, which should be considered by the aircraft brake system engineer to attain the most effective skid control performance, are covered in detail. Methods of determining and evaluating antiskid system performance are discussed. While this document specifically addresses antiskid systems which are a part of a hydraulically actuated brake system, the recommended practices are equally applicable to brakes actuated by other means, such as electrically actuated brakes.
Standard

Design and Testing of Antiskid Brake Control Systems for Total Aircraft Compatibility

1991-11-01
HISTORICAL
ARP1070B
This document covers the general requirements for aircraft skid control systems and their components. Methods of defining skid control system performance criteria for design and evaluation purposes are outlined and recommended. Design and operational goals, general theory, and functions, which should be considered by the aircraft brake system engineer to attain the most effective skid control performance, are covered in detail. Recommended methods for measuring performance of a skid control system are included.
Standard

Design and Testing of Antiskid Brake Control Systems for Total Aircraft Compatibility

2014-11-11
HISTORICAL
ARP1070D
This document outlines the development process and makes recommendations for total antiskid/aircraft systems compatibility. These recommendations encompass all aircraft systems that may affect antiskid brake control. It focuses on recommended practices specific to antiskid and its integration with the aircraft as opposed to more generic practices recommended for all aircraft systems and components. It defers to the documents listed in Section 2, for generic aerospace best practices and requirements.
Standard

Design and Testing of Antiskid Brake Control Systems for Total Aircraft Compatibility

2019-07-22
CURRENT
ARP1070E
This document outlines the development process and makes recommendations for total antiskid/aircraft systems compatibility. These recommendations encompass all aircraft systems that may affect antiskid brake control and performance. It focuses on recommended practices specific to antiskid and its integration with the aircraft, as opposed to more generic practices recommended for all aircraft systems and components. It defers to the documents listed in Section 2 for generic aerospace best practices and requirements. The documents listed below are the major drivers in antiskid/aircraft integration: 1. ARP4754 2. ARP4761 3. RTCA DO-178 4. RTCA DO-254 5. RTCA DO-160 6. ARP490 7. ARP1383 8. ARP1598 In addition, it covers design and operational goals, general theory, and functions, which should be considered by the aircraft brake system engineer to attain the most effective skid control performance, as well as methods of determining and evaluating antiskid system performance.
Standard

Disposition of Damaged Wheels Involved in Accidents/Incidents

2005-05-20
CURRENT
ARP5600
This SAE Aerospace Recommended Practice (ARP) establishes a procedure for disposition of aircraft wheels that have been involved in accidents/incidents or have been exposed to overheat conditions or overload conditions from loss of adjacent tire pressure (paired wheels) or wheel tie bolts.
Standard

INFORMATION ON ANTISKID SYSTEMS

1988-01-01
HISTORICAL
AIR1739
This Aerospace Information Report (AIR) has been prepared by a panel of the SAE A-5 Committee and is presented to document the design approaches and service experience from various applications of antiskid systems. This experience includes commercial and military applications.
X