Refine Your Search

Topic

Search Results

Standard

AUTOMATIC BRAKING SYSTEMS REQUIREMENTS

1993-04-01
HISTORICAL
ARP1907
This ARP covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
Standard

Assessment of Aircraft Wheel Sealing Systems

2020-09-17
CURRENT
ARP5146
This SAE Aerospace Recommended Practice (ARP) is intended to provide guidance on verifying the integrity of inflation pressure sealing systems of aircraft wheel/tire assemblies.
Standard

Automatic Braking Systems

2016-01-25
CURRENT
ARP1907C
This SAE Aerospace Recommended Practice (ARP) covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
Standard

Automatic Braking Systems

2014-08-20
HISTORICAL
ARP1907B
This SAE Aerospace Recommended Practice (ARP) covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
Standard

Automatic Braking Systems Requirements

2006-10-26
HISTORICAL
ARP1907A
This ARP covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
Standard

BRAKE DYNAMICS

2006-03-17
HISTORICAL
AIR1064C
The landing gear is a complex multi-degree of freedom dynamic system and may encounter vibration problems induced by braking action. The vibratory modes can be induced by several frictional characteristics and brake design features. These should be assessed during the design concept and verified during the development of the hardware. This SAE Aerospace Information Report (AIR) has been prepared by a panel of the A-5A Subcommittee to present an overview of the landing gear system problems associated with aircraft brake dynamics and the approaches to the solution of these problems. In addition, facilities available for test and evaluation are presented and discussed.1
Standard

Brake Systems, Wheel, Military Aircraft

2008-10-20
HISTORICAL
AS8584A
This SAE Aerospace Standard (AS) defines the requirements for brake systems used on military aircraft equipped with wheel-type landing gears.
Standard

Brake Systems, Wheel, Military Aircraft

2013-11-01
CURRENT
AS8584B
This SAE Aerospace Standard (AS) defines the requirements for brake systems used on military aircraft equipped with wheel-type landing gears.
Standard

Braking System Dynamics

2016-11-16
CURRENT
AIR1064D
The aircraft landing gear is a complex multi-degree of freedom dynamic system, and may encounter vibration or dynamic response problems induced by braking action. The vibratory modes can be induced by brake and tire-ground frictional characteristics, antiskid operation, brake design features, landing gear design features, and tire characteristics. The impact of this vibration can range from catastrophic failure of critical system components or entire landing gears, to fatigue of small components, to passenger annoyance. It is therefore important that the vibration is assessed during the design concept phase, and verified during the development and testing phases of the system hardware. This SAE Aerospace Information Report (AIR) has been prepared by a panel of the A-5A Subcommittee to present an overview of the landing gear problems associated with aircraft braking system dynamics, and the approaches to the identification, diagnosis, and solution of these problems.
Standard

DESIGN OF SKID CONTROL & ASSOCIATED AIRCRAFT EQUIPMENT FOR TOTAL SYSTEM COMPATIBILITY

1982-04-01
HISTORICAL
ARP1070A
This document covers the general requirements for aircraft skid control systems and their components. Methods of defining skid control system performance criteria for design and evaluation purposes are outlined and recommended. Design and operational goals, general theory, and functions, which must be considered by the aircraft brake systems engineer to attain the most effective skid control performance, are covered in detail. Recommended methods for measuring performance of skid control systems are included.
Standard

Design and Testing of Antiskid Brake Control Systems for Total Aircraft Compatibility

2019-07-22
CURRENT
ARP1070E
This document outlines the development process and makes recommendations for total antiskid/aircraft systems compatibility. These recommendations encompass all aircraft systems that may affect antiskid brake control and performance. It focuses on recommended practices specific to antiskid and its integration with the aircraft, as opposed to more generic practices recommended for all aircraft systems and components. It defers to the documents listed in Section 2 for generic aerospace best practices and requirements. The documents listed below are the major drivers in antiskid/aircraft integration: 1 ARP4754 2 ARP4761 3 RTCA DO-178 4 RTCA DO-254 5 RTCA DO-160 6 ARP490 7 ARP1383 8 ARP1598 In addition, it covers design and operational goals, general theory, and functions, which should be considered by the aircraft brake system engineer to attain the most effective skid control performance, as well as methods of determining and evaluating antiskid system performance.
Standard

Design and Testing of Antiskid Brake Control Systems for Total Aircraft Compatibility

2013-04-22
HISTORICAL
ARP1070C
This document recommends minimum requirements for antiskid brake control to provide total aircraft systems compatibility. Design and operational goals, general theory, and functions, which should be considered by the aircraft brake system engineer to attain the most effective skid control performance, are covered in detail. Methods of determining and evaluating antiskid system performance are discussed. While this document specifically addresses antiskid systems which are a part of a hydraulically actuated brake system, the recommended practices are equally applicable to brakes actuated by other means, such as electrically actuated brakes.
Standard

Design and Testing of Antiskid Brake Control Systems for Total Aircraft Compatibility

2006-10-26
HISTORICAL
ARP1070B
This document covers the general requirements for aircraft skid control systems and their components. Methods of defining skid control system performance criteria for design and evaluation purposes are outlined and recommended. Design and operational goals, general theory, and functions, which should be considered by the aircraft brake system engineer to attain the most effective skid control performance, are covered in detail. Recommended methods for measuring performance of a skid control system are included.
X