Refine Your Search

Topic

Search Results

Standard

AIRCRAFT LANDING GEAR

1995-01-01
HISTORICAL
ARP1311A
This SAE Aerospace Recommended Practice (ARP) applies to landing gear structures and mechanisms (excluding wheels, tires, and brakes) for all types and models of civil and military aircraft applications. All axles, wheel forks, axle beams, links, arms, mechanical and air-oil energy absorbers braces, lock assemblies, trunnion beams, etc., that sustain loads originating at the ground, and that are not integral parts of the airframe structure should be designed in accordance with this document. Hydraulic actuators (retraction, steering, positioning, and/or damping) should also be included in this coverage. It should be the responsibility of the airframe manufacturer to determine the compatibility of these needs with the aircraft and to specify requirements in excess of these minima where appropriate.
Standard

Aircraft Landing Gear

2004-06-24
HISTORICAL
ARP1311B
This SAE Aerospace Recommended Practice (ARP) applies to landing gear structures and mechanisms (excluding wheels, tires, and brakes) for all types and models of civil and military aircraft including all aircraft with vertical landing and crash attenuation requirements. All axles, wheel forks, axle beams, links, arms, mechanical and nitrogen/oil energy absorbers, lock assemblies, braces, trunnion beams, and truck beams etc., that sustain loads originating at the ground, and that are not integral parts of the airframe structure, should be designed in accordance with this document. Hydraulic actuators (retraction, main and nose gear steering, positioning, and/or damping) should also be included in this coverage.
Standard

Aircraft Nosewheel Steering Systems

2012-07-03
HISTORICAL
ARP1595A
This document provides recommended practices for the design, development, and verification testing of aircraft nosewheel steering (NWS) systems.
Standard

Component Traceability Requirements for Life-Limited Parts

2024-03-12
CURRENT
ARP6943
This document contains the recommended practices for the traceability of civil aircraft life-limited parts (LLPs) applicable to landing gears. A unified means of tracking flight cycles, flight hours, and calendar time is provided, which will ease the interchange of parts between companies and through the component’s life cycle. A harmonized means of defining “back-to-birth” (BtB) traceability is provided to ensure airworthiness of service LLPs.
Standard

Crashworthy Landing Gear Design

2007-07-09
HISTORICAL
AIR4566
The intent of this SAE Aerospace Information Report (AIR) is to document the design requirements and approaches for the crashworthy design of aircraft landing gear. This document covers the field of commercial and military airplanes and helicopters. This summary of crashworthy landing gear design requirements and approaches may be used as a reference for future aircraft.
Standard

Crashworthy Landing Gear Design

2021-08-09
CURRENT
AIR4566A
The intent of this SAE Aerospace Information Report (AIR) is to document the design requirements and approaches for the crashworthy design of aircraft landing gear. This document covers the field of commercial and military airplanes and helicopters. This summary of crashworthy landing gear design requirements and approaches may be used as a reference for future aircraft.
Standard

DESIGN, DEVELOPMENT AND TEST CRITERIA - SOLID STATE PROXIMITY SWITCHES/SYSTEMS FOR LANDING GEAR APPLICATIONS

1991-06-01
HISTORICAL
AIR1810A
This document will examine the more important considerations relative to the utilization of "one piece", or integral electronics proximity switches, and "two piece", or separate sensor and electronics proximity switches, for applications on aircraft landing gear. In general, the recommendations included are applicable for other demanding aircraft sensor installations where the environment is equally severe.
Standard

Design, Development and Test Criteria - Solid State Proximity Switches/Systems for Landing Gear Applications

2001-10-01
HISTORICAL
AIR1810B
This document will examine the more important considerations relative to the utilization of "one piece", or integral electronics proximity switches, and "two piece", or separate sensor and electronics proximity switches, for applications on aircraft landing gear. In general, the recommendations included are applicable for other demanding aircraft sensor installations where the environment is equally severe.
Standard

Development and Qualification of Composite Landing Gears

2020-09-17
CURRENT
AIR5552
This information report provides general guidance for the design considerations, qualification in endurance, strength and fatigue of landing gear using composite components as principle structural elements. The information discussed herein includes the development and evaluation of design data considering: the potential for imbedded manufacturing defects, manufacturing process variations, the component operating environment, potential damage threats in service, rework and overhaul, and inspection processes. This AIR mainly discusses the use of thick composites for landing gear structural components. Considerations and recommendations provided in this AIR may therefore differ greatly from considerations and recommendations found in widely accepted composite design references such as CMH-17 and Advisory Circulars such as AC 20-107(B).
Standard

External Hydraulic Fluid Leakage Definition for Landing Gear Shock Absorbers

2023-11-16
CURRENT
ARP6408
The purpose of this SAE Aerospace Recommended Practice (ARP) is to provide a practical definition of external hydraulic fluid leakage exhibited by landing gear shock absorbers/struts. The definition will outline normal (acceptable weepage) and excessive leakage (unacceptable leakage) of shock absorbers/struts that is measurable. The definition of leakage is applicable to new gear assemblies, refurbished/remanufactured (overhauled) shock absorbers/struts, leakage of shock absorbers/struts encountered during acceptance flights, newly delivered and in-service aircraft. This ARP is intended to provide guidelines for acceptable leakage of landing gear shock absorbers/struts between the ambient temperatures of -65 °F (-54 °C) and 130 °F (54 °C) and to outline the procedure for measuring such leakage. The specific limits that are applied to any particular aircraft shall be adjusted by the aircraft manufacturer before inclusion in the applicable maintenance manual.
Standard

Gland Design: Scraper, Landing Gear, Installation

2022-10-26
CURRENT
AS4052C
This SAE Aerospace Standard (AS) covers an alternate gland design for the installation of scraper/ wiper rings in the lower end of landing gear shock struts for the purpose of contaminant exclusion. The defined scraper gland covered by this document, as shown in Table 1, is a variant of AS4716, the accepted gland standard for AS568, O-ring packing seals. Piston rod diameters, gland internal diameters, groove sidewall angles and the surface finish are all defined by AS4716, but the gland outer retaining wall diameter is changed. The traditional scraper design installed into the glands detailed in Table 1 typically utilize components made from PTFE, urethane, or nitrile materials. These scraper designs, while still acceptable, must be reviewed in consideration to deicing, cleaners and disinfectant fluids applied to or in contact with the landing gear, as the materials of construction for the installed scrapers may not be compatible to these fluids.
Standard

Gland Design: Scraper, Landing Gear, Installation

2006-08-02
HISTORICAL
AS4052A
This SAE Aerospace Standard (AS) covers an alternate gland design for the installation of scraper/wiper rings in the lower end of landing gear shock struts for the purpose of contaminant exclusion. The defined scraper gland covered by this document, as shown in Table 1, is a variant of AS4716, the accepted gland standard for MS28775, O-ring packing seals. Piston diameters, gland internal diameters, groove sidewall angles and the surface finish are all defined by AS4716, but the gland outer retaining wall diameter is changed. AS4088 is similar to this document, but was developed by SAE A-6 for flight control and general-purpose cylinders. It differs from this document primarily by the clearance between the rod (piston) and outer gland wall. Since landing gears are more susceptible to dirt contamination, the additional clearance provides a larger path to allow excessive dirt accumulation to exit the gland.
Standard

Gland Design: Scraper, Landing Gear, Installation

2021-02-03
HISTORICAL
AS4052B
This SAE Aerospace Standard (AS) covers an alternate gland design for the installation of scraper/wiper rings in the lower end of landing gear shock struts for the purpose of contaminant exclusion. The defined scraper gland covered by this document, as shown in Table 1, is a variant of AS4716, the accepted gland standard for MS28775, O-ring packing seals. Piston rod diameters, gland internal diameters, groove sidewall angles and the surface finish are all defined by AS4716, but the gland outer retaining wall diameter is changed. The traditional scraper design installed into the glands detailed in Table 1 typically utilize components made from urethane or nitrile materials. These scraper designs, while still acceptable, must be reviewed in consideration to deicing, cleaners and disinfectant fluids applied to or in contact with the landing gear, as the materials of construction for the installed scrapers may not be compatible to these fluids.
Standard

Landing Gear Fatigue Spectrum Development For Part 25 Aircraft

2020-02-28
CURRENT
AIR5914
This SAE Aerospace Information Report (AIR) provides guidelines for the development of landing gear fatigue spectra for the purpose of designing and certification testing of Part 25 landing gear. Many of the recommendations herein are generalizations based on data obtained from a wide range of landing gears. The aircraft manufacturer or the landing gear supplier is encouraged to use data more specific to their particular undercarriage whenever possible.
Standard

Landing Gear Shock Strut Hydraulic Fluid

2015-04-27
HISTORICAL
AIR5358
This SAE Aerospace Information Report (AIR) was prepared by a panel of the SAE A-5 Committee. This document establishes the specifications for fluids used in landing gear shock struts with extreme pressure and antiwear additives that have been added for improved lubrication. This document requires qualified products.
X