Refine Your Search

Topic

Search Results

Standard

Component Traceability Requirements for Life Limited Parts

2019-04-18
WIP
ARP6943
This document contains the recommended practices for the traceability of civil aircraft life limited parts. A unified means of tracking flight cycles, flight hours, and calendar time is provided which will ease the interchange of parts between companies and through the component's life cycle. A harmonized means of providing 'back to birth traceability' is provided.
Standard

Composite Secondary and Tertiary Structure for Landing Gear

2019-04-29
WIP
AIR6827
This document will contain guidance and considerations for the use of composite materials on non-primary structure for landing gear systems. Content to include design considerations, conditions and applications where composites are feasible/beneficial, high-level descriptions of various manufacturing processes, and certification/validation considerations.
Standard

DESIGN, DEVELOPMENT AND TEST CRITERIA - SOLID STATE PROXIMITY SWITCHES/SYSTEMS FOR LANDING GEAR APPLICATIONS

1986-07-09
HISTORICAL
AIR1810A
This document will examine the more important considerations relative to the utilization of "one piece", or integral electronics proximity switches, and "two piece", or separate sensor and electronics proximity switches, for applications on aircraft landing gear. In general, the recommendations included are applicable for other demanding aircraft sensor installations where the environment is equally severe.
Standard

Design, Development and Test Criteria - Solid State Proximity Switches/Systems for Landing Gear Applications

2001-10-01
HISTORICAL
AIR1810B
This document will examine the more important considerations relative to the utilization of "one piece", or integral electronics proximity switches, and "two piece", or separate sensor and electronics proximity switches, for applications on aircraft landing gear. In general, the recommendations included are applicable for other demanding aircraft sensor installations where the environment is equally severe.
Standard

Development and Qualification of Composite Landing Gears

2016-01-04
WIP
AIR5552A
This information report provides general guidance for the design considerations, qualification in endurance, strength and fatigue of landing gear using composite components as principle structural elements. The information discussed herein includes the development and evaluation of design data considering: the potential for imbedded manufacturing defects, manufacturing process variations, the component operating environment, potential damage threats in service, rework and overhaul, and inspection processes. This AIR mainly discusses the use of thick composites for landing gear structural components. Considerations and recommendations provided in this AIR may therefore differ greatly from considerations and recommendations found in widely accepted composite design references such as CMH-17 and Advisory Circulars such as AC 20-107(B).
Standard

Disposition of Landing Gear Components Involved in Accidents/Incidents

2011-10-20
CURRENT
ARP4915B
This document establishes a procedure for disposition of landing gear components that have been involved in accidents/incidents. The recommendations in this document apply to components made of ferrous and non-ferrous alloys. The recommendations in this document do not apply to components made of non metallic composite materials.
Standard

Extraordinary and Special Purpose Landing Gear Systems

2012-10-03
CURRENT
AIR4846A
A landing gear system comprises the most compelling assembly of engineering skills. Its importance to the successful design of an aircraft can be favorably compared with that of the aircraft's wings and engines. A landing gear system consists of several different engineering disciplines, and is continually in the public eye especially with regard to safety. The primary objective of AIR4846 is to present a record of a variety of interesting gears, gear/aircraft systems and patents, and to discuss wherever possible the lessons learned, and the reasons for the design. Thus, the document is not only a historical account, but a means of recording technical knowledge for the practical benefit of future landing gear designers. Commendable efforts have been made over the years by several individuals to make such recordings, and AIR4846 will make continual reference to them. This applies to all books, papers, or specifications that have the approval of the SAE A-5 Committee.
Standard

Extraordinary and Special Purpose Landing Gear Systems

2006-05-19
HISTORICAL
AIR4846
A landing gear system comprises the most compelling assembly of engineering skills. Its importance to the successful design of an aircraft can be favorably compared with that of the aircraft's wings and engines. A landing gear system consists of several different engineering disciplines, and is continually in the public eye especially with regard to safety. The primary objective of AIR4846 is to present a record of a variety of interesting gears, gear/aircraft systems and patents, and to discuss wherever possible the lessons learned, and the reasons for the design. Thus, the document is not only a historical account, but a means of recording technical knowledge for the practical benefit of future landing gear designers. Commendable efforts have been made over the years by several individuals to make such recordings, and AIR4846 will make continual reference to them. This applies to all books, papers, or specifications that have the approval of the SAE A-5 Committee.
Standard

Gland Design: Nominal 3/8 Inch Cross Section for Compression-Type Seals

2019-06-17
CURRENT
AS4832A
This SAE Aerospace Standard (AS) offers gland details for a 0.364 inch (9.246 mm) cross-section gland (nominal 3/8 inch) with proposed gland lengths for compression-type seals with two backup rings over a range of 7 to 21 inches (178 to 533 mm) in diameter. The dash number system used is similar to AS568A. A 600 series has been chosen as a logical extension of AS568A, and the 625 number has been selected for the initial number, since 300 and 400 series in MIL-G-5514 and AS4716 begin with 325 and 425 sizes. Seal configurations and design are not a part of this document. This gland is for use with compression-type seals including, but not limited to, O-rings, T-rings, D-rings, cap seals, etc.
Standard

Guide for Installation of Electrical Wire and Cable on Aircraft Landing Gear

1989-11-28
HISTORICAL
AIR4004
Recent field experience has indicated significant problems with some types of wire and cable as routed on aircraft landing gear. This Aerospace Information Report (AIR) is intended to identify environmental concerns the designer must consider, materials that appear to be most suitable for use in these areas, routing, clamping, and other protection techniques that are appropriate in these applications.
Standard

Guide for Installation of Electrical Wire and Cable on Aircraft Landing Gear

2015-07-04
CURRENT
AIR4004A
Recent field experience has indicated significant problems with some types of wire and cables as routed on aircraft landing gear. This SAE Aerospace Information Report (AIR) is intended to identify environmental concerns the designer should consider, materials that appear to be most suitable for use in these areas, routing, clamping, and other protection techniques that are appropriate in these applications. In recent years aircraft certification regulatory agencies introduced new regulations regarding Electrical Wiring Interconnection Systems (EWIS) to further enhance safety of the associated systems and aircraft overall.
Standard

Historical Design Information of Aircraft Landing Gear and Control Actuation Systems

2017-07-10
CURRENT
AIR5565
This aerospace information report (AIR) provides historical design information for various aircraft landing gear and actuation/control systems that may be useful in the design of future systems for similar applications. It presents the basic characteristics, hardware descriptions, functional schematics, and discussions of the actuation mechanisms, controls, and alternate release systems. The report is divided into two basic sections: 1 Landing gear actuation system history from 1876 to the present. This section provides an overview and the defining examples that demonstrate the evolution of landing gear actuation systems to the present day. 2 This section of the report provides an in depth review of various aircraft. A summary table of aircraft detail contained within this section is provided in paragraph 4.1. The intent is to add new and old aircraft retraction/extension systems to this AIR as the data becomes available.
Standard

Information on Hard Landings

2018-02-27
WIP
AIR5938A

This document provides information on the current practices used by commercial and military operators in regards to hard landings (or overload events designated as hard landings). Since detailed information on inspections would be aircraft specific, this AIR provides only a general framework. Detailed information and procedures are available in the maintenance manuals for specific aircraft.

Because hard landings potentially affect the entire aircraft, guidelines are listed here for non-landing gear areas. But, the primary focus of the document is the landing gear and related systems. The document may be considered to be applicable to all types of aircraft.

This document does NOT provide recommended practices for hard landing inspections, nor does it provide recommendations on the disposition of damaged equipment. Refer to ARP 4915 and ARP 5600.

Standard

Landing Gear Common Repair

2019-04-11
CURRENT
AIR5885A
This document outlines the most common repairs used on landing gear components. It is not the intention of this AIR to replace overhaul/component maintenance or technical order manuals, but it can serve as a guide into their preparation. Refer to the applicable component drawings and specifications for surface finish, thickness, and repair processing requirements. This document may also be used as a guide to develop an MRB (Material Review Board) plan. The repairs in this document apply to components made of metallic alloys. These repairs are intended for new manufactured components and overhauled components, including original equipment manufacturer (OEM)/depot and in-service repairs. The extent of repair allowed for new components as opposed to in-service components is left to the cognizant engineering authorities. Reference could be made to this document when justifying repairs on landing gears. For repairs outside the scope of this document, a detailed justification is necessary.
Standard

Landing Gear Common Repair

2004-12-01
HISTORICAL
AIR5885
This document outlines the most common repairs used on landing gear components. It is not the intention of this AIR to replace Overhaul/Component Maintenance or Technical Order Manuals, but it can serve as a guide into their preparation. This document may also be used as a template to develop an MRB (Material Review Board) plan. The recommendations in this document apply to components made of metallic alloys. These recommendations are intended for new manufactured components as well as for overhauled components. The extent of repair allowed for new components as opposed to in-service components is left to the cognizant engineering authorities. Reference could be made to this document when justifying repairs on landing gears. For repairs outside the scope of this document, a detailed justification is necessary. It must be understood that all the repairs listed in this document are not to be applied without the involvement of the cognizant engineer.
Standard

Landing Gear Integrity Program

2016-03-17
WIP
ARP6412
The scope of the Landing Gear Integrity Programs (LGIP) Aerospace Recommended Practice (ARP) is intended to assist in the safe-life structural integrity management of the landing gear system and subsystems components. In addition, component reliability, availability, and maintainability is included in a holistic LGIP.
Standard

Landing Gear Safety Criticap Processes

2018-02-28
WIP
AIR6813
There are a number of safety critical processes that are common to landing gear systems. A safety critical process (CSP) is a landing gearmaintenance manufacturing, repair or overhaul process which if ommitted or preformed incorrectly will cause failure of a safety citical item (CSI) in operation. A CSI is a landing gear item whose failure or omission will cause more than $1M in damage, serious injury or death. This AIR will define methods and modes of failure for CSPs based on experience.
X