Refine Your Search

Topic

Search Results

Standard

ACCEPTANCE TEST PROCEDURES AND STANDARDS TO INSURE CLEAN FUEL SYSTEM COMPONENTS

1996-11-01
HISTORICAL
ARP1953A
To describe general guidelines for achieving selected levels of cleanliness in gas turbine engine fuel system components and to describe laboratory type methods for measuring and reporting the contamination level of the wetted portion of fuel system components. As in SAE J1227 (covering hydraulic components) this practice includes guidelines for levels of acceptance but does not attempt to set those levels.
Standard

ACCEPTANCE TEST PROCEDURES AND STANDARDS TO INSURE CLEAN FUEL SYSTEM COMPONENTS

1987-10-01
HISTORICAL
ARP1953
To describe general guidelines for achieving selected levels of cleanliness in gas turbine engine fuel system components and to describe laboratory type methods for measuring and reporting the contamination level of the wetted portion of fuel system components. As in SAE J1227 (covering hydraulic components) this practice includes guidelines for levels of acceptance but does not attempt to set those levels.
Standard

Acceptance Test Procedures and Standards to Ensure Clean Fuel System Components

2014-11-25
CURRENT
ARP1953B
To describe general guidelines for achieving selected levels of cleanliness in gas turbine engine fuel system components and to describe laboratory methods for measuring and reporting the contamination level of the wetted portion of fuel system components. As in SAE J1227 (covering hydraulic components) this practice includes guidelines for levels of acceptance but does not attempt to set those levels.
Standard

Aircraft Fuel System and Component Icing Test

2016-05-17
WIP
ARP1401C
This Aerospace Recommended Practice (ARP) covers a brief discussion of the icing problem in aircraft fuel systems and different means that have been used to test for icing. Fuel preparation procedures and icing tests for aircraft fuel systems and components are proposed herein as a recommended practice to be used in the aircraft industry for fixed wing aircraft and their operational environment only. In the context of this ARP, the engine (and APU) is not considered to be a component of the aircraft fuel system, for the engine fuel system is subjected to icing tests by the engine/APU manufacturer for commercial and specific military applications. This ARP is written mostly to address fuel system level testing. It also provides a means to address the requirements of 14 CFR 23.951(c) and 25.951(c). Some of the methods described in this document can be applied to engine and APU level testing or components of those application domains.
Standard

Considerations on Ice Formation in Aircraft Fuel Systems

2008-08-15
WIP
AIR790D
Ice formation in aircraft fuel systems results from the presence of dissolved and undissolved water in the fuel. Dissolved water or water in solution with hydrocarbon fuels constitutes a relatively small part of the total water potential in a particular system with the quantity dissolved being primarily dependent on the fuel temperature and the water solubility characteristics of the fuel. One condition of undissolved water is entrained water such as water particles suspended in the fuel as a result of mechanical agitation of free water or conversion of dissolved water through temperature reduction. Another condition of undissolved water is free water which may be introduced as a result of refueling or the settling of entrained water which collects at the bottom of a fuel tank in easily detectable quantities separated by a continuous interface from the fuel above. Water may also be introduced as a result of condensation from air entering a fuel tank through the vent system.
Standard

DEFINITION OF PRESSURE SURGE TEST AND MEASUREMENT METHODS FOR RECEIVER AIRCRAFT

1983-03-01
HISTORICAL
ARP1665
The test procedure applies to the refueling manifold system connecting the receiver aircraft fuel tanks to the refueling source fuel pump(s) for both ground and aerial refueling. The test procedure is intended to verify that the limit value for surge pressure specified for the receiver fuel system is not exceeded when refueling from a refueling source which meets the requirements of AS 1284 (reference 2). This recommended practice is not directly applicable to surge pressure developed during operation of an aircraft fuel system, such as initiating or stopping engine fuel feed or fuel transfer within an aircraft, or the pressure surge produced when the fuel pumps are first started to fill an empty fuel manifold.
Standard

Definition of Pressure Surge Test and Measurement Methods for Receiver Aircraft

2013-08-07
WIP
ARP1665B
The test procedure applies to the refueling manifold system connectingn the receiver aircraft fuel tanks to the refueling source fuel pump(s) for both ground and aerial refueling. The test procedure is intended to verify that the limit value for surge pressure specified for the receiver fuel system is not exceeded when refueling from a refueling source which meets the requirements of AS1284 (reference 2). This recommended practice is not directly applicable to surge pressure developed during operation of an aircraft fuel system, such as initiating or stopping engine fuel feed or fuel transfer within an aircraft, or the pressure surge produced when the fuel pumps are first started to fill an empty fuel manifold.
Standard

Electrical Bonding of Aircraft Fuel Systems

2017-10-20
WIP
AIR5128B
This SAE Aerospace Information Report (AIR) is limited to the subject of aircraft fuel systems and the questions concerning the requirements for electrical bonding of the various components of the system as related to Static Electric Charges, Fault Current, Electromagnetic Interference (EMI) and Lightning Strikes (Direct and Indirect Effects). This AIR contains engineering guidelines for the design, installation, testing (measurement) and inspection of electrical bonds.
Standard

Engine Fuel System and Component Icing Test

2015-06-25
WIP
ARP6340
This ARP provides recommended practice on the considerations and methodology to demonstrate acceptable performance of the Engine components / fuel system, and APU, whilst operating throughout the flight cycle / engine duty for continuous operation with iced fuel and short duration operation with a snowshower resulting from release of accreted ice from fuel washed surfaces, where no anti-icing additives are present (e.g. Fuel System Icing Inhibitor FSII or alternative). Two scenarios must be considered when demonstrating the capability of Engine components / fuel system, and APU to operate with fuel borne ice to satisfy certification regulations applications in support of FAA Part 23 and Part 25, CFR Part 33, and corresponding EASA CS-E regulations, and equivalent Military application requirements.
Standard

FIRE TESTING OF FLUID HANDLING COMPONENTS FOR AIRCRAFT ENGINES AND AIRCRAFT ENGINE INSTALLATIONS

1996-08-01
HISTORICAL
AS4273
This document establishes requirements, test procedures, and acceptance criteria for the fire testing of fluid handling components and materials used in aircraft fluid systems. It is applicable to fluid handling components other than those prescribed by AS1055 (e.g., hoses, tube assemblies, coils, fittings). It also is applicable to materials, wiring, and components such as reservoirs, valves, gearboxes, pumps, filter assemblies, accumulators, fluid-cooled electrical/electronic components, in-flight fluid system instrumentation, hydromechanical controls, actuators, heat exchangers, and manifolds. These components may be used in fuel, lubrication, hydraulic, or pneumatic systems.
Standard

FLUID-SYSTEM-COMPONENT SPECIFICATION PREPARATION CRITERIA

1992-02-01
HISTORICAL
AIR1082B
The importance of adequate component procurement specifications to the success of a hardware development program cannot be overemphasized. Specifications which are too stringent can be as detrimental as specifications which are too lax. Performance specifications must not only identify all of the component requirements, but they must also include sufficient quality assurance provisions so that compliance can be verified. It should be understood that in almost every case specifications for components will ultimately become part of a BINDING, WRITTEN CONTRACT (PO). The purpose of this document is to describe types of specifications, provide guidance for the preparation of fluid component specifications, and identify documents commonly referenced in fluid component specifications.
Standard

FUEL LEVEL POINT SENSING

2015-04-21
WIP
AIR6325
This Aerospace Information Report (AIR) is intended to provide comprehensive reference and background information pertaining to aircraft point level sensing
Standard

Fluid-System-Component Specification Preparation Criteria

2013-10-04
CURRENT
AIR1082C
The importance of adequate component procurement specifications to the success of a hardware development program cannot be overemphasized. Specifications which are too stringent can be as detrimental as specifications which are too lax. Performance specifications must not only identify all of the component requirements, but they must also include sufficient quality assurance provisions so that compliance can be verified. It should be understood that in almost every case specifications for components will ultimately become part of a BINDING, WRITTEN CONTRACT (PO). The purpose of this document is to describe types of specifications, provide guidance for the preparation of fluid component specifications, and identify documents commonly referenced in fluid component specifications.
Standard

Fuel System Definitions and Glossary of Terms

2015-05-20
WIP
AIR6510
This SAE Aerospace Information Report (AIR) comprises the technical terms and nomenclature, together with their definitions and abbreviations that are used in Aircraft Fuel Systems.
Standard

Fuel System Design Considerations for Composite Based Fuel Components

2018-11-19
WIP
AIR7493
This SAE Aerospace Information Report (AIR) is a compilation of engineering design guidelines and reference data useful to ensure composite materials used in fuel system components are compatible with an aircraft fuel system. This AIR is not a complete design manual, but offers insight into key aspects of composition design that must be adequately researched and verified before being used in a fuel system.
Standard

Fuel Thermal Management Systems

2016-04-21
WIP
AIR6380
Overview of thermal management system Key requirements and design considerations for thermal management system Lessons learned
Standard

Glossary of Terms - Aircraft Ground Refueling

2015-09-23
WIP
AIR4783A
This SAE Aerospace Information Report (AIR) presents a glossary of terms commonly utilized in the ground delivery of fuel to an aircraft and some terms relating to the aircraft being refueled. The purpose of this document is to provide background material for educational purposes to persons designing, building, and using aircraft ground refueling delivery systems.
X