Refine Your Search

Topic

Search Results

Standard

400 Hz CONNECTION AIRCRAFT ELECTRICAL MAINTENANCE PROCEDURES

1994-12-01
HISTORICAL
AIR4365
This SAE Aerospace Information Report (AIR) describes field-level procedures to determine if 400 Hz electrical connections for external power may have been subjected to excessive wear, which may result in inadequate disengagement forces.
Standard

400-CYCLE GROUND POWER UNIT PROVISIONS FOR AIRCRAFT ELECTRICAL SYSTEM PROTECTION

2002-12-16
CURRENT
ARP760
This SAE Recommended Practice which defines the terms and tabulates the limits of the characteristics for various protective devices used in conjunction with 400-cycle ground power for civil aircraft is intended to assist the airlines in standardizing on 400-cycle protective systems. The limits found to be acceptable in the civil aircraft industry are presented.
Standard

AIRCRAFT CARGO CONVEYOR - BATTERY POWERED

1985-07-01
HISTORICAL
ARP1836
This Recommended Practice outlines the functional and design requirements for a battery powered, self propelled belt conveyor for handling baggage and cargo at aircraft bulk cargo holds.
Standard

AIRCRAFT CARGO CONVEYOR - BATTERY POWERED

1994-12-01
HISTORICAL
ARP1836A
This SAE Aerospace Recommended Practice (ARP) outlines the functional and design requirements for a battery powered, self-propelled belt conveyor for handling baggage and cargo at aircraft bulk cargo holds.
Standard

Aircraft Cargo Conveyor

2016-04-04
CURRENT
ARP1836C
This SAE Aerospace Recommended Practice (ARP) outlines the functional and design requirements for a b self-propelled belt conveyor for handling baggage and cargo at aircraft bulk cargo holds. Additional considerations and requirements may legally apply in other countries. As an example, for operation in Europe (E.U. and E.F.T.A.), the applicable EN standards shall be complied with.
Standard

Aircraft Cargo Conveyor - Battery Powered

2008-10-20
HISTORICAL
ARP1836B
This SAE Aerospace Recommended Practice (ARP) outlines the functional and design requirements for a battery powered, self-propelled belt conveyor for handling baggage and cargo at aircraft bulk cargo holds. Additional considerations and requirements may legally apply in other countries. As an example, for operation in Europe (E.U. and E.F.T.A.), the applicable EN standards shall be complied with.
Standard

Aircraft Ground Air Conditioning Service Connection

2012-12-05
CURRENT
AS4262B
This SAE Aerospace Standard (AS) defines interface configurations for the ground air conditioning service connection on commercial transport aircraft. In addition, it defines the clearances required to accommodate the connection of ground air conditioning hose couplings. Two types of service connections are included. The Type A connection (Figure 1) is a slotted ring with integral locking pads and is comparable to the MS33562 connection. The Type B connection (Figure 2) is a flanged tube with external locking lugs (Figure 3). The Type B connection has the same interface dimensional requirements as the Type A connection.
Standard

Airport Electrical Power System Harmonics

1999-08-01
CURRENT
AIR5387
This SAE Aerospace Information Report (AIR) is intended to cover all airport 50 or 60 Hz electrical systems as well as all electrical utilization equipment that is attached to those systems.
Standard

CHARGER FOR BATTERY POWERED GROUND SUPPORT EQUIPMENT

1996-07-01
HISTORICAL
ARP1816B
This SAE Aerospace Recommended Practice (ARP) describes an industrial battery charger, solid state type, hereafter called charger, for use in charging lead acid batteries in ground support equipment.
Standard

Charger for Battery Powered Ground Support Equipment

2015-07-13
CURRENT
ARP1816D
This SAE Aerospace Recommended Practice (ARP) describes three general types of Ground Support Equipment (GSE) battery chargers. The battery charger typically requiring up to 8 hours to recharge a 100% discharged battery, hereafter called “Conventional Charger.” A charger, hereafter called “Opportunity Charger,” which has the ability to charge at a slightly faster rate than a conventional charger. A charger, hereafter called “Fast Charger,” which has the ability to charge at a much faster rate than a conventional charger. Recommendations that apply to all types will refer generically to “charger.”
Standard

Charger for Battery Powered Ground Support Equipment

2009-06-29
HISTORICAL
ARP1816C
This SAE Aerospace Recommended Practice (ARP) describes two general types of Ground Support Equipment (GSE) battery chargers. The conventional industrial battery charger typically requiring up to 8 hours to recharge a 100% discharged battery, hereafter called “Conventional Charger”. The other type a fast battery charger typically used as an opportunity charger for ground support equipment, hereafter called “Fast Charger”. Recommendations that apply to both types will refer generically to “charger”.
Standard

Charger for Battery Powered Ground Support Equipment

1984-09-01
HISTORICAL
ARP1816
This SAE Aerospace Recommended Practice (ARP) describes two general types of Ground Support Equipment (GSE) battery chargers. The conventional industrial battery charger typically requiring up to 8 hours to recharge a 100% discharged battery, hereafter called “Conventional Charger”. The other type a fast battery charger typically used as an opportunity charger for ground support equipment, hereafter called “Fast Charger”. Recommendations that apply to both types will refer generically to “charger”.
Standard

Charger for Battery Powered Ground Support Equipment

1991-04-01
HISTORICAL
ARP1816A
This SAE Aerospace Recommended Practice (ARP) describes two general types of Ground Support Equipment (GSE) battery chargers. The conventional industrial battery charger typically requiring up to 8 hours to recharge a 100% discharged battery, hereafter called “Conventional Charger”. The other type a fast battery charger typically used as an opportunity charger for ground support equipment, hereafter called “Fast Charger”. Recommendations that apply to both types will refer generically to “charger”.
Standard

Design and Safety Criteria for Passenger Boarding Stairways

2012-03-28
CURRENT
ARP836C
This SAE Aerospace Recommended Practice (ARP) is broken into various categories for convenience and ease of identification. It is the purpose of this document to provide certain criteria for the design and selection of stairways, for the boarding of passengers onto an aircraft. The criteria presented are limited to those factors which affect the safety of the passengers and are coordinated, where applicable, with the practices of the architectural profession, with respect to the design of stairways. The recommended practices are applicable to both mobile variable-elevation type stairways and to fixed-elevation stairways of the type built into an aircraft fuselage.
X