Refine Your Search

Topic

Search Results

Standard

Aerospace TSN Profile

2019-10-24
WIP
AS6675
Develop a profile of the TSN set of standards that is applicable to Avionics use cases, including AS6509 CAIN
Standard

Broadband 1553

2018-05-22
WIP
AS8774
This standard defines a broadband time division command/response multiplex data bus that co-exists and permits concurrent operation with a MIL-STD-1553 Data Bus and MIL-STD-1760 Appendix C. This standard allows utilization of legacy MIL-STD-1553 wiring and bus coupling.
Standard

Converged Aerospace Integrated Network (CAIN)

2015-04-14
WIP
AS6509
Fibre Channel is the primary avionics bus on many modern military aircraft. It is also the defined High-Speed bus for MIL-STD-1760E weapons applications. Profiled Ethernet networks are the primary avionics bus in many commercial aircraft and Commercial Ethernet is an ever increasing presence in modern military aircraft as well. This network standard is a convergence of Fibre Channel and Ethernet into a unified network standard which will provide a seamless approach to integrating end systems from either technology into a merged network structure. This work is based upon the commercial data storage market industry’s work on the Converged Data Storage Network or FCoE (Fibre Channel over Ethernet). This effort will look at profiling the FCoE work done in the commercial industry and adding information where necessary to affect a networking standard that will seamlessly integrate end systems from Commercial Ethernet, Fibre Channel, or FCoE enhanced devices.
Standard

Data Word and Message Formats

1999-01-01
HISTORICAL
AS15532
The emphasis in this standard is the development of data word and message formats for AS15531 or MIL-STD-1553 data bus applications. This standard is intended as a guide for the designer to identify standard data words and messages for use in avionics systems and subsystems. These standard words and messages, as well as the documentation format for interface control document (ICD) sheets, provide the basis for defining 15531/1553 systems. Also provided in this standard is the method for developing additional data word formats and messages that may be required by a particular system but are not covered by the formats provided herein. It is essential that any new word formats or message formats that are developed for a 15531/1553 application follow the fundamental guidelines established in this standard in order to ease future standardization of these words and messages. The standard word formats presented represent a composite result of studies conducted by the U.S.
Standard

Data Word and Message Formats

2016-10-21
CURRENT
AS15532A
The emphasis in this standard is the development of data word and message formats for AS15531 or MIL-STD-1553 data bus applications. This standard is intended as a guide for the designer to identify standard data words and messages for use in avionics systems and subsystems. These standard words and messages, as well as the documentation format for interface control document (ICD) sheets, provide the basis for defining 15531/1553 systems. Also provided in this standard is the method for developing additional data word formats and messages that may be required by a particular system but are not covered by the formats provided herein. It is essential that any new word formats or message formats that are developed for a 15531/1553 application follow the fundamental guidelines established in this standard in order to ease future standardization of these words and messages. The standard word formats presented represent a composite result of studies conducted by the U.S.
Standard

Guidelines for Ethernet Physical Layer on Military and Aerospace Vehicle Applications

2017-08-01
WIP
ARP7208
This ARP establishes guidelines for the use of IEEE-802.3 as a data bus network in military and aerospace vehicles. It encompasses the data cable and its connections for a system utilizing 10Base-T, 100Base-T, 1000BASE-T and 10GBASE-T over copper medium dependent interfaces (MDI). This document contains extensions/restrictions to “off-the-shelf” IEEE-802.3 standards, and assumes that the reader already has a working knowledge of IEEE-802.3.
Standard

HIGH SPEED RING BUS (HSRB) STANDARD

1988-08-29
HISTORICAL
AS4075
A fault tolerant, real time high speed data communication standard is defined based on a ring topology and the use of a Token passing access method with distributed control. The requirements for the HSRB standard have been driven predominantly, but not exclusively, by military applications. Particular attention has been given to the need for low message latency, deterministic message priority and comprehensive reconfiguration capabilities. This document contains a definition of the semantics and protocol including delimiters, tokens, message priority, addressing, error detection and recovery schemes; and is written to be independent of bit rate and media. Parameters related to particular media and bit rates are defined in separate documents, the AS4075 slash sheets.
Standard

Handbook For The SAE AS4075 High Speed Ring Bus Standard

1995-02-01
HISTORICAL
AIR4289
This Handbook has been prepared by the Ring Implementation Task Group of the SAE AS-2 Committee, and is intended to support AS4075 by providing explanation of the standard itself and guidance on its use. The principal objective in the preparation of a standard is to provide a statement of operational and performance requirements, and an unambiguous definition of the functions to be realized in any implementation, primarily from the view point of interoperability. While efforts have been made within the AS4075 standard to provide a readable general description of the HSRB, detailed explanations, rationale and guidance to the use are incompatible with the purpose and, indeed, the format of a standard. Accordingly, this Handbook contains a paragraph-by-paragraph explanation of the main sections of the standard, and a discussion of application and implementation issues.
Standard

Handbook for the Digital Time Division Command/Response Multiplex Data Bus Test Plans

1992-10-30
HISTORICAL
AIR4295
This document contains guidance for using SAE publications, AS4112 through AS4117 (MIL-STD-1553 related Test Plans). Included herein are the referenced test plan paragraphs numbers and titles, the purpose of the test, the associated MIL-STD-1553 paragraph, commentary concerning test methods and rationale, and instrumentation requirements.
Standard

Handbook for the SAE AS4075 High Speed Ring Bus Standard

2012-05-03
CURRENT
AIR4289A
This Handbook has been prepared by the Ring Implementation Task Group of the SAE AS-2 Committee, and is intended to support AS4075 by providing explanation of the standard itself and guidance on its use. The principal objective in the preparation of a standard is to provide a statement of operational and performance requirements, and an unambiguous definition of the functions to be realized in any implementation, primarily from the view point of interoperability. While efforts have been made within the AS4075 standard to provide a readable general description of the HSRB, detailed explanations, rationale and guidance to the use are incompatible with the purpose and, indeed, the format of a standard. Accordingly, this Handbook contains a paragraph-by-paragraph explanation of the main sections of the standard, and a discussion of application and implementation issues.
Standard

Handbook of System Data Communications

2016-10-21
CURRENT
AIR4271A
This Aerospace Information Report (AIR) has been prepared by the Systems Applications and Requirements Subcommittee of SAE Committee AS-2. It is intended to provide guidance primarily, but not exclusively, for specifiers and designers of data communication systems for real time military avionics applications within a platform. The subject of high speed data transmission is addressed from two standpoints: (1) the influence of developments in technology on avionics architectures as a whole and (2) the way in which specific problems, such as video, voice, closed loop control, and security may be handled. While the material has been prepared against a background of experience within SAE AS-2 relating to the development of a family of high speed interconnect standards, reference to specific standards and interconnect systems is minimized.
Standard

Handbook of System Data Communications

1989-11-01
HISTORICAL
AIR4271
This Aerospace Information Report (AIR) has been prepared by the Systems Applications and Requirements Subcommittee of SAE Committee AS-2. It is intended to provide guidance primarily, but not exclusively, for specifiers and designers of data communication systems for real time military avionics applications within a platform. The subject of high speed data transmission is addressed from two standpoints: (1) the influence of developments in technology on avionics architectures as a whole and (2) the way in which specific problems, such as video, voice, closed loop control, and security may be handled. While the material has been prepared against a background of experience within SAE AS-2 relating to the development of a family of high speed interconnect standards, reference to specific standards and interconnect systems is minimized.
Standard

High Performance 1553 Research and Development

2016-10-21
CURRENT
AIR5683A
MIL-STD-1553 establishes requirements for digital command/response time division multiplexing (TDM) techniques on military vehicles, especially aircraft. The existing MIL-STD-1553 network operates at a bit rate of 1 Mbps and is limited by the protocol to a maximum data payload capacity of approximately 700 kilobits per second. The limited capacity of MIL-STD-1553 buses coupled with emerging data rich applications for avionics platforms plus the expense involved with changing or adding wires to thousands of aircraft in the fleet has driven the need for expanding the data carrying capacity of the existing MIL-STD-1553 infrastructure.
Standard

High Performance 1553 Research and Development

2007-02-21
HISTORICAL
AIR5683
MIL-STD-1553 establishes requirements for digital command/response time division multiplexing (TDM) techniques on military vehicles, especially aircraft. The existing MIL-STD-1553 network operates at a bit rate of 1 Mbps and is limited by the protocol to a maximum data payload capacity of approximately 700 kilobits per second. The limited capacity of MIL-STD-1553 buses coupled with emerging data rich applications for avionics platforms plus the expense involved with changing or adding wires to thousands of aircraft in the fleet has driven the need for expanding the data carrying capacity of the existing MIL-STD-1553 infrastructure.
Standard

High Speed Ring Bus (HSRB) Standard

2012-05-03
CURRENT
AS4075A
A fault tolerant, real time high speed data communication standard is defined based on a ring topology and the use of a Token passing access method with distributed control. The requirements for the HSRB standard have been driven predominantly, but not exclusively, by military applications. Particular attention has been given to the need for low message latency, deterministic message priority and comprehensive reconfiguration capabilities. This document contains a definition of the semantics and protocol including delimiters, tokens, message priority, addressing, error detection and recovery schemes; and is written to be independent of bit rate and media. Parameters related to particular media and bit rates are defined in separate documents, the AS4075 slash sheets.
Standard

IEEE-1394b for Military and Aerospace Vehicles - Applications Handbook

2019-08-12
CURRENT
AIR5654A
This Handbook is intended to accompany or incorporate AS5643, AS5643/1, AS5657, AS5706, and ARD5708. In addition, full understanding of this Handbook also requires knowledge of IEEE-1394-1995, IEEE-1394a, and IEEE-1394b standards. This Handbook contains detailed explanations and architecture analysis on AS5643, bus timing and scheduling considerations, system redundancy design considerations, suggestions on AS5643-based system configurations, cable selection guidance, and lessons learned on failure modes.
Standard

IEEE-1394b for Military and Aerospace Vehicles – Applications Handbook

2009-04-01
HISTORICAL
AIR5654
This handbook is intended to accompany or incorporate AS5643 IEEE-1394b Interface Requirements for Military and Aerospace Vehicle Applications, AS5643/1 S400 Copper Media Interface Characteristics over Extended Distances, AS5657 Test Plan/Procedure for AS5643 IEEE-1394b Interface Requirements for Military and Aerospace Vehicle Applications, AS5706 Test Plan/procedure for AS5643/1 S400 Copper Media Interface Characteristics Over Extended Distances, and ARD5708 Frequently Asked Questions about IEEE-1394b and SAE AS5643. In addition, full understanding of this handbook also requires knowledge of IEEE-1394-1995, IEEE-1394a and IEEE-1394b standards. This handbook contains detailed explanations and architecture analysis on AS5643, bus timing and scheduling considerations, system redundancy design considerations, suggestions on AS5643-based system configurations, cable selection guidance, and lessons learned on failure modes.
Standard

Linear Token Passing Multiplex Data Bus

2004-10-14
HISTORICAL
AS4074A
This standard specifies the characteristics of the SAE Linear Token Passing Bus (LTPB) Interface Unit. The LTPB provides a high reliability, high bandwidth, low latency serial interconnection network suitable for utilization in real time military and commercial applications. Multiple redundant data paths can be implemented to enhance reliability and survivability in those applications which require these attributes. The token passing and data exchange protocols are optimized to provide low latency and fast failure detection and correction. Physical configurations with bus lengths up to 1000 m can be accommodated.
Standard

Linear Token Passing Multiplex Data Bus User's Handbook

1992-12-30
HISTORICAL
AIR4288
This document is intended to explain, in detail, the rationale behind the features and functions of the AS4074, Linear, Token-passing, Bus (LTPB). The discussions also address the considerations which a system designer should take into account when designing a system using this bus. Other information can be found in these related documents:
Standard

Linear Token Passing Multiplex Data Bus User's Handbook

2012-05-03
CURRENT
AIR4288A
This document is intended to explain, in detail, the rationale behind the features and functions of the AS4074, Linear, Token-passing, Bus (LTPB). The discussions also address the considerations which a system designer should take into account when designing a system using this bus. Other information can be found in these related documents: AIR4271 - Handbook of System Data Communication AS4290 - Validation Test Plan for AS4074
X