Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Technical Paper

A Structural Stress Recovery Procedure for Fatigue Life Assessment of Welded Structures

2017-03-28
2017-01-0343
Over the decades, several attempts have been made to develop new fatigue analysis methods for welded joints since most of the incidents in automotive structures are joints related. Therefore, a reliable and effective fatigue damage parameter is needed to properly predict the failure location and fatigue life of these welded structures to reduce the hardware testing, time, and the associated cost. The nodal force-based structural stress approach is becoming widely used in fatigue life assessment of welded structures. In this paper, a new nodal force-based structural stress recovery procedure is proposed that uses the least squares method to linearly smooth the stresses in elements along the weld line. Weight function is introduced to give flexibility in choosing different weighting schemes between elements. Two typical weighting schemes are discussed and compared.
Technical Paper

An Application for Fatigue Damage Analysis Using Power Spectral Density from Road Durability Events

1998-02-23
980689
A method is presented to process random vibration data from a complete road durability test environment as stationary segments and then develop test profiles based on fatigue content of their power spectral densities. Background is provided on existing techniques for estimating fatigue damage in the frequency domain. A general model for stress response to acceleration is offered to address the vibration test's requirement for acceleration data and the fatigue prediction method's requirement for stress data. With these tools, the engineer can extend test correlation beyond failure modes to include retention of estimated fatigue damage. Recommendations allow for test time compression from editing and improve existing exaggeration methods.
Technical Paper

Application of Fatigue Life Prediction Methods for GMAW Joints in Vehicle Structures and Frames

2011-04-12
2011-01-0192
In the North American automotive industry, various advanced high strength steels (AHSS) are used to lighten vehicle structures, improve safety performance and fuel economy, and reduce harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using Gas Metal Arc Welding (GMAW) in the current generation body-in-white structures. Additionally, fatigue failures are most likely to occur at joints subjected to a variety of different loadings. It is therefore critical that automotive engineers need to understand the fatigue characteristics of welded joints. The Sheet Steel Fatigue Committee of the Auto/Steel Partnership (A/S-P) completed a comprehensive fatigue study on GMAW joints of both AHSS and conventional sheet steels including: DP590 GA, SAE 1008, HSLA HR 420, DP 600 HR, Boron, DQSK, TRIP 780 GI, and DP780 GI steels.
Technical Paper

Discussion of Fatigue Analysis Techniques in Automotive Applications

2004-03-08
2004-01-0626
This paper is targeted to engineers who are involved in predicting fatigue life using either the strain-life approach or the stress-life approach. However, more emphasis is given to the strain-life approach, which is commonly used for fatigue life analysis in the ground vehicle industry. It attempts to discuss, modify and extend approaches in fatigue analysis, so they are best suited for structural durability engineers. Fatigue analysis requires the use of material fatigue properties, stress or strain results obtained from finite element analyses or measurements, and load data obtained from multi-body dynamic analysis or road load data acquisition. This paper examines the effects of these variables in predicting fatigue life. Various mean stress corrections, along with their advantages and disadvantages are discussed. Different stress/strain combinations such as signed von Mises, and signed Tresca are examined. Also, advanced methods such as Fatemi-Socie and Bannantine are discussed.
Journal Article

Effect of Water Absorption on Tensile and Fatigue Behaviors of Two Short Glass Fiber Reinforced Thermoplastics

2015-04-14
2015-01-0546
An experimental study was conducted to evaluate the effect of water absorption on tensile and fatigue behaviors of an impact-modified short glass fiber polyamide-6 and a short glass fiber polybutylene terephthalate. Specimens were prepared in the longitudinal and transverse directions with respect to the injection mold flow direction and immersed in water. Kinetics of water absorption was studied and found to follow the Fick's law. Tensile tests were performed at room temperature with specimens in the longitudinal and transverse directions and with various degrees of water absorption. Mathematical relations were developed to represent tensile properties as a function of water content. Load-controlled tension-tension fatigue tests were conducted in both longitudinal and transverse directions and correlations between tensile and fatigue strengths were obtained. Specimen fracture surfaces were also microscopically studied and mechanisms of tensile and fatigue failures were identified.
Journal Article

Fatigue Behavior of Neat and Short Glass Fiber Reinforced Polymers under Two-Step Loadings and Periodic Overloads

2016-04-05
2016-01-0373
An experimental study was conducted to evaluate the variable amplitude fatigue behavior of a neat polymer (polypropylene impact co-polymer) and a polymer composite made of polybutylene terephthalate (PBT) with 30 wt% short glass fibers. Fatigue tests were conducted on un-notched and notched specimens at room temperatures. Plate-type specimens were prepared in the transverse direction with respect to the injection mold flow direction and a circular hole was drilled in the center of notched specimens. Two-step loadings (high-low and low-high) tests at two damage ratio of 0.2 and 0.5 at stress ratios of R = 0.1 and -1 were conducted to investigate load sequence effects and prediction accuracy of the linear damage rule. Different behaviors were observed for unreinforced and short glass fiber reinforced polymers under the two-step loading tests.
Technical Paper

Fatigue Life Prediction for Adaptable Insert Welds between Sheet Steel and Cast Magnesium Alloy

2016-04-05
2016-01-0392
Joining technology is a key factor to utilize dissimilar materials in vehicle structures. Adaptable insert weld (AIW) technology is developed to join sheet steel (HSLA350) to cast magnesium alloy (AM60) and is constructed by combining riveting technology and electrical resistance spot welding technology. In this project, the AIW joint technology is applied to construct front shock tower structures composed with HSLA350, AM60, and Al6082 and a method is developed to predict the fatigue life of the AIW joints. Lap-shear and cross-tension specimens were constructed and tested to develop the fatigue parameters (load-life curves) of AIW joint. Two FEA modeling techniques for AIW joints were used to model the specimen geometry. These modeling approaches are area contact method (ACM) and TIE contact method.
Technical Paper

Fatigue Life Prediction of Friction Stir Linear Welds for Magnesium Alloys

2016-04-05
2016-01-0386
Friction stir linear welding (FSLW) is widely used in joining lightweight materials including aluminum alloys and magnesium alloys. However, fatigue life prediction method for FSLW is not well developed yet for vehicle structure applications. This paper is tried to use two different methods for the prediction of fatigue life of FSLW in vehicle structures. FSLW is represented with 2-D shell elements for the structural stress approach and is represented with TIE contact for the maximum principal stress approach in finite element (FE) models. S-N curves were developed from coupon specimen test results for both the approaches. These S-N curves were used to predict fatigue life of FSLW of a front shock tower structure that was constructed by joining AM60 to AZ31 and AM60 to AM30. The fatigue life prediction results were then correlated with test results of the front shock tower structures.
Technical Paper

STATISTICAL ANALYSIS OF LOW CYCLE FATIGUE PROPERTIES IN METALS FOR ROBUST DESIGN

2019-11-21
2019-28-2576
Objective: In ground vehicle industry, strain life approach is commonly used for predicting fatigue life. This approach requires use of fatigue material properties such as fatigue strength coefficient (σf'), fatigue strength exponent (b), fatigue ductility coefficient (εf'), fatigue ductility exponent (c), cyclic strength coefficient (K′) and cyclic strain hardening exponent (n′). These properties are obtained from stable hysteresis loop of constant amplitude strain-controlled uniaxial fatigue tests. Usually fatigue material properties represent 50th percentile experimental data and doesn't account possible material variation in the fatigue life calculation. However, for robust design of vehicle components, variation in material properties need to be taken into account. In this paper, methodology to develop 5th percentile (B5), 10th percentile (B10) and 20th percentile (B20) fatigue material properties are discussed.
Technical Paper

Tensile and Fatigue Behaviors of Two Thermoplastics Including Strain Rate, Temperature, and Mean Stress Effects

2014-04-01
2014-01-0901
An experimental investigation was conducted to evaluate tensile and fatigue behaviors of two thermoplastics, a neat impact polypropylene and a mineral and elastomer reinforced polyolefin. Tensile tests were performed at various strain rates at room, −40°C, and 85°C temperatures with specimens cut parallel and perpendicular to the mold flow direction. Tensile properties were determined from these tests and mathematical relations were developed to represent tensile properties as a function of strain rate and temperature. For fatigue behavior, the effects considered include mold flow direction, mean stress, and temperature. Tension-compression as well as tension-tension load-controlled fatigue tests were performed at room temperature, −40°C and 85°C. The effect of mean stress was modeled using the Walker mean stress model and a simple model with a mean stress sensitivity factor.
Technical Paper

Vehicle Component Fatigue Analysis Considering Largest Overall Loop for Multiple Surfaces

2006-04-03
2006-01-0979
In the automotive industry, vehicle durability analysis is based on test schedule encompassing multiple road surfaces (events) including rough roads, potholes, etc. Traditionally, in the Computer Aided Engineering (CAE) world, road load data for various road surfaces are measured/predicted and fatigue life is predicted for each individual road surface. Fatigue life for the complete test schedule is then calculated with Miner’s rule by summing fatigue damage for each road surface with an appropriate number of repetitions. A major pitfall of this approach is that it does not consider the effect of the largest rainflow range across the entire test schedule. The method described in this paper was developed to perform fatigue analysis of structures subjected to diverse road surfaces and also consider the case in which the maximum overall peak and minimum overall valley do not occur over the same road surface.
X