Refine Your Search


Search Results

Technical Paper

100% LPG Long Haul Truck Conversion - Economy and Environmental Benefits

Advanced Vehicle Technologies (AVT), a Ballarat Australia based company, has developed the World's first diesel to 100% LPG conversion for heavy haul trucks. There is no diesel required or utilized on the trucks. The engine is converted with minimal changes into a spark ignition engine with equivalent power and torque of the diesel. The patented technology is now deployed in 2 Mercedes Actros trucks. The power output in engine dynamometer testing exceeds that of the diesel (in excess of 370 kW power and 2700 Nm torque). In on-road application the power curve is matched to the diesel specifications to avoid potential downstream power-train stress. Testing at the Department of Transport Energy & Infrastructure, Regency Park, SA have shown the Euro 3 truck converted to LPG is between Euro 4 and Euro 5 NOx levels, CO2 levels 10% better than diesel on DT80 test and about even with diesel on CUEDC tests.
Technical Paper

A Naturally Aspirated Four Stroke Racing Engine with One Intake and One Exhaust Horizontal Rotary Valve per Cylinder and Central Direct Injection and Ignition by Spark or Jet

The paper discusses the benefits of a four stroke engine having one intake and one exhaust rotary valve. The rotary valve has a speed of rotation half the crankshaft and defines an open passage that may permit up to extremely sharp opening or closing and very large gas exchange areas. The dual rotary valve design is applied to a racing engine naturally aspirated V-four engine of 1000cc displacement, gasoline fuelled with central direct injection and spark ignition. The engine is then modeled by using a 1D engine & gas dynamics simulation software package to assess the potentials of the solution. The improved design produces much larger power densities than the version of the engines with traditional poppet valves revving at higher speeds, with reduced frictional losses, and with larger gas exchange areas while also improving the fuel conversion efficiency thanks to the sharpness of opening or closing events.
Journal Article

A New Method to Warm Up Lubricating Oil to Improve the Fuel Efficiency During Cold Start

Cold start driving cycles exhibit an increase in friction losses due to the low temperatures of metal and media compared to normal operating engine conditions. These friction losses are responsible for up to 10% penalty in fuel economy over the official drive cycles like the New European Drive Cycle (NEDC), where the temperature of the oil even at the end of the 1180 s of the drive cycle is below the fully warmed up values of between 100°C and 120°C. At engine oil temperatures below 100°C the water from the blowby condensates and dilutes the engine oil in the oil pan which negatively affects engine wear. Therefore engine oil temperatures above 100°C are desirable to minimize engine wear through blowby condensate. The paper presents a new technique to warm up the engine oil that significantly reduces the friction losses and therefore also reduces the fuel economy penalty during a 22°C cold start NEDC.
Technical Paper

A Novel Valve-Less Supercharged Small Two Stroke Engine of Top Brake Efficiency Above 36% and Power Density above 100 KW/Liter

The paper presents a novel design for a two stroke thermal engine that delivers excellent fuel economy and low emissions within the constraints of today's cost, weight and size. The engine features asymmetrical port timing through a novel translating and rotating piston mechanism. The engine is externally scavenged and supercharged, has wet sump and oil pressure lubrication, direct injection, it is lightweight, easy to build, with minimal number of parts, low production cost, ability to be balanced and compact design. The two stroke mechanism produces a linear motion of the pistons as well as an elliptical path on the surface of the cylinder. This allows the piston to sweep as well as travel past the ports. Suitable slots around the raised lip of the piston generate the asymmetry that makes the exhaust port to open first and to close first. The inlet port remains open to complete the cylinder charging and allow supercharging. Direct fuel injection is adopted for best results.
Technical Paper

A Novel Wankel Engine Featuring Jet Ignition and Port or Direct Injection for Faster and More Complete Combustion Especially Designed for Gaseous Fuels

Hydrogen Internal Combustion Engine (ICE) vehicles using a traditional ICE that has been modified to use hydrogen fuel are an important mid-term technology on the path to the hydrogen economy. Hydrogen-powered ICEs that can run on pure hydrogen or a blend of hydrogen and compressed natural gas (CNG) are a way of addressing the widespread lack of hydrogen fuelling infrastructure in the near term. Hydrogen-powered ICEs have operating advantages as all weather conditions performances, no warm-up, no cold-start issues and being more fuel efficient than conventional spark-ignition engines. The Wankel engine is one of the best ICE to be converted to run hydrogen. The paper presents some details of an initial investigation of the CAD and CAE modeling of a novel design where two jet ignition devices per rotor are replacing the traditional two spark plugs for a faster and more complete combustion.
Technical Paper

A novel dual fuel engine diesel-hydrogen featuring high pressure cryogenic liquid hydrogen injection and super-turbocharging

The development of high-power density high efficiency internal combustion engines (ICEs) fueled with hydrogen, in a dual fuel with diesel injection ignition direct injection (DI) compression ignition (CI), design, calls for much better dedicated injectors. These injectors would have to work higher pressures, with cryogenic fluids, delivering substantial amounts of fuel flow energy within brief time frames, with high speed of actuation. High pressure direct injectors were proposed in the past to work with gaseous fuels up to 200 bars, delivering up to 23 g/s of hydrogen and effective minimum passage areas of 0.8 mm2. The adoption of injection pressures of 600 bars, coupled to the cryogenic delivery of the liquified hydrogen at 113 K, allow much larger flow rates per unit effective flow area, thus allowing much larger fuel energy flows with smaller injectors, that are lighter and much faster actuating.
Technical Paper

Advances in Combustion Systems for Gas Engines

The paper presents a novel concept of a very efficient transportation engines for operation with CNG, LNG or LPG. The paper considers the options of single fuel design with jet ignition and dual fuel design with Diesel and gas. In the first option gas fuel is injected into the main chamber by a direct injector and ignited by jet ignition. In the second option gas fuel is injected into the main chamber by a direct injector and ignited by the direct injection of a small quantity of Diesel fuel. Injection and ignition may be tuned to control the amount of premixed and diffusion combustion to produce the best fuel conversion efficiency vs. load and speed requirements within the prescribed pressure and temperature constraints.

Advances in Turbocharged Racing Engines

Racing continues to provide the preeminent directive for advancing powertrain development for automakers worldwide. Formula 1, World Rally, and World Endurance Championship all provide engineering teams the most demanding and rigorous testing opportunities for the latest engine and technology designs. Turbocharging has seen significant growth in the passenger car market after years of development on racing circuits. Advances in Turbocharged Racing Engines combines ten essential SAE technical papers with introductory content from the editor on turbocharged engine use in F1, WRC, and WEC-recognizing how forced induction in racing has impacted production vehicle powertrains.
Technical Paper

Advances in Waste Heat Recovery Systems for Gas Engines

The paper presents a novel concept of very efficient transportation engines for operation with CNG, LNG or LPG. The combustion system permits mixed diesel/gasoline-like operation changing the load by quantity of fuel injected and modulating the premixed and diffusion combustion phases for high fuel energy transfer to piston work. A waste heat recovery system (WHRS) is then recovering the intercooler and engine coolant energy plus the exhaust energy. The WHRS uses a power turbine on the exhaust and a steam turbine feed by a single loop turbo-steamer. The WHRS is the enabler of much faster warm up of the engine and further improvements of the top fuel conversion efficiency to above 50% for the specific case with reduced fuel efficiency penalties changing the load or the speed.
Technical Paper

Alternative Crankshaft Mechanisms and Kinetic Energy Recovery Systems for Improved Fuel Economy of Light Duty Vehicles

The introduction of advanced internal combustion engine mechanisms and powertrains may improve the fuel conversion efficiency of an engine and thus reduce the amount of energy needed to power the vehicle. The paper presents a novel design of a variable compression ratio advanced spark ignition engine that also permits an expansion ratio that may differ from the induction stroke therefore generating an Atkinson cycle effect. The stroke ratio and the ratio of maximum to minimum in-cylinder volumes may change with load and speed to provide the best fuel conversion efficiency. The variable ratio of maximum to minimum in-cylinder volumes also improves the full load power output of the engine. Results of vehicle driving cycle simulations of a light-duty gasoline vehicle with the advanced engine show dramatic improvements of fuel economy.
Technical Paper

Analysis of Design of Pure Ethanol Engines

Ethanol, unlike petroleum, is a renewable resource that can be produced from agricultural feed stocks. Ethanol fuel is widely used by flex-fuel light vehicles in Brazil and as oxygenate to gasoline in the United States. Ethanol can be blended with gasoline in varying quantities up to pure ethanol (E100), and most modern gasoline engines well operate with mixtures of 10% ethanol (E10). E100 consumption in an engine is higher than for gasoline since the energy per unit volume of ethanol is lower than for gasoline. The higher octane number of ethanol may possibly allow increased power output and better fuel economy of pure ethanol engines vs. flexi-fuel engines. High compression ratio ethanol only vehicles possibly will have fuel efficiency equal to or greater than current gasoline engines.
Technical Paper

Analysis of the Regenerative Braking Efficiency of a Latest Electric Vehicle

Kinetic energy recovery systems (KERS) placed on one axle coupled to a traditional thermal engine on the other axle is possibly the best solution presently available to dramatically improve the fuel economy while providing better performances within strict budget constraints. Different KERS may be built purely electric, purely mechanic, or hybrid mechanic/electric differing for round trip efficiency, packaging, weights, costs and requirement of further research and development. The paper presents an experimental analysis of the energy flow to and from the battery of a latest Nissan Leaf covering the Urban Dynamometer Driving Schedule (UDDS). This analysis provides a state-of-the-art benchmark of the propulsion and regenerative braking efficiencies of electric vehicles with off-the-shelve technologies.
Technical Paper

CAD/CFD/CAE Modelling of Wankel Engines for UAV

The Wankel engine for Unmanned Aerial Vehicle (UAV) applications delivers advantages vs. piston engines of simplicity, smoothness, compactness and high power-to-weight ratio. The use of computational fluid dynamic (CFD) and computer aided engineering (CAE) tools may permit to address the major downfalls of these engines, namely the slow and incomplete combustion due to the low temperatures and the rotating combustion chambers. The paper proposes the results of CAD/CFD/CAE modelling of a Wankel engine featuring tangential jet ignition to produce faster and more complete combustion.
Technical Paper

CNG Fueling Strategies for Commercial Vehicles Engines-A Literature Review

The paper presents a survey of the opportunities to convert compression ignition heavy duty truck engines to work on single or dual fuel modes with CNG. In one popular option, the compression ignition engine is converted to spark ignition with throttle load control and port injection of the CNG. In another option of increasing popularity, the LNG is directly injected and ignited by direct injection of pilot Diesel. This latter option with direct injection of natural gas and diesel through separate injectors that are fully independent in their operation is determined to be the most promising, as it is expected to deliver better power density and similar part load fuel economy to Diesel.
Technical Paper

Compressed Natural Gas and Hydrogen Fuelling of a Naturally Aspirated Four Stroke Engine with One Intake and One Exhaust Horizontal Rotary Valve per Cylinder and Central Direct Injection and Spark or Jet Ignition

The paper discusses the benefits of a four stroke engine having one intake and one exhaust rotary valve. The rotary valve has a speed of rotation half the crankshaft and defines an open passage that may permit up to extremely sharp opening or closing and very large gas exchange areas. This design also permits central direct injection and ignition by spark or jets. The dual rotary valve design is applied to a naturally aspirated V-four engine of 1000cc displacement, gasoline, methane or hydrogen fuelled with central direct injection and spark ignition. The engine is modeled by using a 1D engine & gas dynamics simulation software package to assess the potentials of the solution. The novelty in the proposed dual rotary valve system is the combustion chamber of good shape and high compression ratio with central direct injector and spark plug or jet ignition, coupled to the large gas exchange areas of the rotary system.
Technical Paper

Coupling of a KERS Power Train and a Downsized 1.2TDI Diesel or a 1.6TDI-JI H2 Engine for Improved Fuel Economies in a Compact Car

Recovery of braking energy during driving cycles is the most effective option to improve fuel economy and reduce green house gas (GHG) emissions. Hybrid electric vehicles suffer the disadvantages of the four efficiency-reducing transformations in each regenerative braking cycle. Flywheel kinetic energy recovery systems (KERS) may boost this efficiency up to almost double values of about 70% avoiding all four of the efficiency-reducing transformations from one form of energy to another and keeping the vehicle's energy in the same form as when the vehicle starts braking when the vehicle is back up to speed. With reference to the baseline configuration with a 1.6 liters engine and no recovery of kinetic energy, introduction of KERS reduces the fuel usage to 3.16 liters per 100 km, corresponding to 82.4 g of CO₂ per km. The 1.6 liters Turbo Direct Injection (TDI) diesel engine without KERS uses 1.37 MJ per km of fuel energy, reducing with KERS to 1.13 MJ per km.
Technical Paper

Coupling of a KERS Powertrain and a 4 Litre Gasoline Engine for Improved Fuel Economy in a Full Size Car

Improvements of vehicle fuel economy are being considered using a mechanically driven flywheel to reduce the amount of mechanical energy produced by the thermal engine recovering the vehicle kinetic energy during braking. A mechanical system having an overall efficiency over a full regenerative cycle of about 70%, about twice the efficiency of battery-based hybrids, is coupled to a naturally aspirated gasoline engine powering a full size sedan. Results of chassis dynamometer experiments and engine and vehicle simulations are used to evaluate the fuel benefits introducing a kinetic energy recovery system and downsizing of the engine. Preliminary results running the new European driving cycle (NEDC) show KERS may reduce fuel consumption by 25% without downsizing, and 33% with downsizing of the 4 litre engine to 3.3 litres.
Technical Paper

Design of 65 degree V4 Moto GP Engines with Pneumatic Poppet Valves or Rotary Valves

Moto GP engines have since the year 2012 4 cylinders in V or inline layout for a total capacity of up to 1,000cc. With pneumatic valve spring but wet sump, and with the maximum bore limited to 81mm, the maximum speed these engines may have is about 18,000 rpm, with power outputs 250-260 HP. The paper presents the design of a 65 degree V4 Moto GP engine further optimizing the pneumatic poppet valve design, as well as a novel rotary valve design. The rotary valve permits up to extremely sharp opening or closing and very large gas exchange areas. The two engines are then modeled by using a 1D engine & gas dynamics simulation software package to assess the potentials of the solution. The improved design produces much larger power densities than the version of the engines with traditional poppet valves revving at higher speeds.
Technical Paper

Design of Rankine Cycle Systems to Deliver Fuel Economy Benefits over Cold Start Driving Cycles

Prior papers have shown the potentials of gasoline-like internal combustion engines fitted with waste heat recovery systems (WHR) to deliver Diesel-like steady state fuel conversion efficiencies recovering the exhaust and the coolant waste heat with off-the-shelf components. In addition to the pros of the technology significantly increasing steady state efficiencies - up to 5 % in absolute values and much more in relative values - these papers also mentioned the cons of the technology, increased back pressures, increased weight, more complex packaging, more complex control, troublesome transient operation, and finally the cold start issues that prevent the uptake of the technology. This paper further explores the option to use Rankine cycle systems to improve the fuel economy of vehicles under normal driving conditions. A single Rankine cycle system is integrated here with the engine design.
Technical Paper

Direct Injection and Spark Controlled Jet Ignition to Convert A Diesel Truck Engine to LPG

Jet ignition and direct fuel injection are potential enablers of higher efficiency, cleaner Internal Combustion Engines (ICE). Very lean mixtures of gaseous fuels could be burned with pollutants formation below Euro 6 levels (in the ultra-lean mode), efficiencies approaching 50% full load and small efficiency penalties when operating part load. The lean burn Direct Injection Jet Ignition (DI-JI) ICE uses a fuel injection and mixture ignition system comprising one main chamber direct fuel injector and one small-size jet ignition pre-chamber per engine cylinder. The jet ignition pre-chamber is connected to the main chamber through calibrated orifices and accommodates a second direct fuel injector. In the spark plug version, the jet ignition pre-chamber includes a spark plug that ignites the slightly rich pre-chamber mixture that then bulk ignites the ultra lean, stratified main chamber mixture through multiple jets of hot reacting gases entering the in-cylinder.