Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

42V Automotive Power Systems

2001-08-20
2001-01-2465
With the increase of hotel and ancillary loads and replacement of engine driven mechanical and hydraulic loads with electrical loads, automotive systems are becoming more electric. This is the concept of More Electric Cars (MEC) that necessitates a higher system voltage, such as the proposed 42V, for conventional cars. In this paper, the development of the 42V electric power system for vehicle applications is reviewed. The system architecture and motor drive problems associated with the 42V electric power system are analyzed. Solutions to these problems are also discussed.
Technical Paper

Design and Implementation of a Mobile Single-Phase AC Power Supply for Land Vehicles with 28V/200V Dual Voltage Alternators

2003-06-23
2003-01-2297
In land vehicles with high-power electrical loads, other than the low-voltage DC bus (14V, 28V, or 42V) for the low-power conventional loads, a high-voltage bus, e.g., 200V DC, is required for high-power loads such as hotel loads and electrically-assisted propulsion systems. In addition, some advanced electrical loads including luxury loads and AC power point require 120V, 60Hz AC voltage. These land vehicles include heavy duty, fire fighting, and military vehicles. There are two traditional approaches in obtaining a dual DC voltage bus system. The first one is to obtain the low-voltage DC from the alternator and boost it to the high-voltage DC. The second method is to obtain the high-voltage DC directly from the alternator and reduce it to the low-voltage. Both approaches require additional step-up or step-down power conversion stages, which inherently result in a reduced efficiency. In this paper, a new approach with a 28V/200V dual voltage alternator is considered.
Technical Paper

Driver-in-the-Loop Drivability and Energy Efficiency Analysis of Regenerative Braking Strategies for Electric Vehicles

2023-04-11
2023-01-0480
This paper investigates different regenerative braking strategies applied to Battery Electric Vehicles, such as series and parallel brake blends. The comparison includes energy efficiency assessment using homologation and real-world drive cycle and objective and subjective drivability evaluation. Multiple simulations are performed using a one-dimensional (1D) vehicle model developed in Simulink and a static driving simulator. The driving simulator provides a fair comparison of real-world driving since it creates repeatable highway and urban traffic conditions. These simulations compare the system energy efficiency by looking at the battery's state of charge (SOC). The drivability is assessed on top of consumption by using the static driving simulator. It is objectively measured by calculating the longitudinal acceleration change ratio over time, which occurs during the regeneration ramp-in and ramp-out, for different pedal positions and pedal gradients.
Technical Paper

Electrical System Architectures for Future Aircraft

1999-08-02
1999-01-2645
This paper addresses the fundamental issues faced in the aircraft electrical system architectures. Furthermore, a brief description of the conventional and advanced aircraft power system architectures, their disadvantages, opportunities for improvement, future electric loads, role of power electronics, and present trends in aircraft power system research will be given. Finally, this paper concludes with a brief outline of the projected advancements in the future.
Technical Paper

Low-Voltage Switched Reluctance Machine Based Traction Systems for Lightly Hybridized Vehicles

2001-08-20
2001-01-2507
This paper presents that low-voltage (42V) current intensive Switched Reluctance Machine (SRM) based traction systems are feasible for lightly hybridized vehicles. Power electronic drive as well as electric machine issues are comprehensively addressed. Five different SRM drivers for low-voltage and high-voltage machines are studied. Suitability of the proposed low-voltage, high-current drives is elaborated. Furthermore, four machines with the rating of 7.5 kW are designed and simulated. These traction machines have 6/4 and 8/6 SRM configurations with the operating voltage of 42V and 300V. Higher torque density is the main advantage of the low-voltage machines compared to the high-voltage machines. In addition, 6/4 SRMs have better performance.
Technical Paper

Multitarget Evaluation of Hybrid Electric Vehicle Powertrain Architectures Considering Fuel Economy and Battery Lifetime

2020-06-30
2020-37-0015
Hybrid electric vehicle (HEV) powertrains are characterized by a complex design environment as a result of both the large number of possible layouts and the need for dedicated energy management strategies. When selecting the most suitable hybrid powertrain architecture at an early design stage of HEVs, engineers usually focus solely on fuel economy (directly linked to tailpipe emissions) and vehicle drivability performance. However, high voltage batteries are a crucial component of HEVs as well in terms of performance and cost. This paper introduces a multitarget assessment framework for HEV powertrain architectures which considers both fuel economy and battery lifetime. A multi-objective formulation of dynamic programming is initially presented as an off-line optimal HEV energy management strategy capable of predicting both fuel economy performance and battery lifetime of HEV powertrain layout options.
Technical Paper

On the Suitability of Low-Voltage (42 V) Electrical Power System for Traction Applications in the Parallel Hybrid Electric Vehicles

2000-04-02
2000-01-1558
There is a clear trend towards Hybrid Electric Vehicles (HEV) due to the environmental concerns. On the other hand, with increasing hotel and ancillary loads and replacement of more engine driven mechanical and hydraulic loads with electrical loads, automotive systems are becoming more electric. This is the concept of More Electric Cars (MEC) which necessitates going to a higher voltage such as 42V for conventional cars. Can the evaluation of the 42V MEC smoothly lead to the Hybrid Electric Vehicles (HEV) and More Electric Hybrid Vehicles (MEHV)? In this paper, we investigate the feasibility of 42V & 14+42V electrical power systems for MEHV. Technical issues of such a solution are explored in detail.
X