Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Effect of Carbon Coating on Scuffing of Steel Surfaces during Oil Lubrication

2002-03-19
2002-01-1389
A failure mode in engine components that undermines engine reliability is scuffing; defined as sudden catastrophic failure of sliding surfaces. Usually accompanied by a rapid rise in friction and temperature, occurrence of scuffing marks the end of the component's useful life. At Argonne National Laboratory, we recently developed low-friction amorphous carbon coatings with exceptional tribological properties. The present study evaluates the scuffing performance of three variations of the carbon coating deposited on H-13 steel surfaces and lubricated with base-stock and fully formulated synthetic Poly-alfa-olefin (PAO) lubricants. Using a ball-on-flat contact configuration in reciprocating sliding, we found that although the coatings reduced friction slightly, they increased scuffing resistance significantly when one of the sliding surfaces was coated when compared to uncoated steel-on-steel contact.
Technical Paper

Friction and Wear Performance of Low-Friction Carbon Coatings Under Oil Lubrication

2002-06-03
2002-01-1921
Amorphous carbon coatings with very low friction properties were recently developed at Argonne National Laboratory. These coatings have shown good promise in mitigating excessive wear and scuffing problems associated with low-lubricity diesel fuels. To reduce the negative effect of sulfur and other lubricant additives in poisoning the after-treatment catalyst, a lubricant formulation with a low level of sulfur may be needed. Exclusion of proven sulfur-containing extreme pressure (EP) and antiwear additives from oils will require other measures to ensure durability of critical lubricated components. The low-friction carbon coating has the potential for such applications. In the present study, we evaluated the friction and wear attributes of three variations of the coating under a boundary lubrication regime. Tests were conducted with both synthetic and mineral oil lubricants using a ball-on-flat contact configuration in reciprocating sliding.
Technical Paper

Near-Frictionless Carbon Coatings for Use in Fuel Injectors and Pump Systems Operating with Low-Sulfur Diesel Fuels

2000-03-06
2000-01-0518
While sulfur in diesel fuels helps reduce friction and prevents wear and galling in fuel pump and injector systems, it also creates environmental pollution in the form of hazardous particulates and SO2 emissions. The environmental concern is the driving force behind industry's efforts to come up with new alternative approaches to this problem. One such approach is to replace sulfur in diesel fuels with other chemicals that would maintain the antifriction and antiwear properties provided by sulfur in diesel fuels while at the same time reducing particulate emissions. A second alternative might be to surface-treat fuel injection parts (i.e., nitriding, carburizing, or coating the surfaces) to reduce or eliminate failures associated with the use of low-sulfur diesel fuels. Our research explores the potential usefulness of a near-frictionless carbon (NFC) film developed at Argonne National Laboratory in alleviating the aforementioned problems.
Technical Paper

Performance of Amorphous Carbon Coating in Turbocompressor Air Bearings

2002-06-03
2002-01-1922
The U.S. Department of Energy has a program to develop fuel cell technology for automotive applications. For maximum efficiency, a fuel cell system requires a compact, light-weight, and highly efficient air compressor to provide a stream of clean air to the fuel cell stack. Meruit, Inc., is developing a turbocompressor for this application. Journal and thrust air bearings are two critical components of the turbocompressor that require low friction and excellent wear resistance. These components were coated with Argonne's new low-friction amorphous carbon coating and tested in an air bearing test rig. Results to date show that the coating provides the required friction reduction, as indicated by reduction in time to lift-off of the radial journal bearing during cyclic start/stop testing. The coating also prevented wall climbing which can cause bearing instability.
X