Refine Your Search

Topic

Search Results

Journal Article

A Hydrogen Direct Injection Engine Concept that Exceeds U.S. DOE Light-Duty Efficiency Targets

2012-04-16
2012-01-0653
Striving for sustainable transportation solutions, hydrogen is often identified as a promising energy carrier and internal combustion engines are seen as a cost effective consumer of hydrogen to facilitate the development of a large-scale hydrogen infrastructure. Driven by efficiency and emissions targets defined by the U.S. Department of Energy, a research team at Argonne National Laboratory has worked on optimizing a spark-ignited direct injection engine for hydrogen. Using direct injection improves volumetric efficiency and provides the opportunity to properly stratify the fuel-air mixture in-cylinder. Collaborative 3D-CFD and experimental efforts have focused on optimizing the mixture stratification and have demonstrated the potential for high engine efficiency with low NOx emissions. Performance of the hydrogen engine is evaluated in this paper over a speed range from 1000 to 3000 RPM and a load range from 1.7 to 14.3 bar BMEP.
Journal Article

Analysis of Cyclic Variability and the Effect of Dilute Combustion in a Gasoline Direct Injection Engine

2014-04-01
2014-01-1238
The pressing need to improve U.S. energy independence and reduce climate forcing fossil fuel emissions continues to motivate the development of high-efficiency internal combustion engines. A recent trend has been to downsize and turbocharge automotive spark-ignited engines coupled with direct fuel injection to improve engine efficiency while maintaining vehicle performance. In-line with recent trends in state-of-the-art engine technology, the focus of this study is lean and EGR dilute combustion in a gasoline direct injection (GDI) engine. The lean and dilute operating limits are defined by combustion stability typically in terms of COVIMEP so experiments were carried out on an automotive size single-cylinder research engine to characterize combustion stability. From a 20,000 cycle sequence analysis, lean operating conditions exhibit binary high- to low-IMEP cycle sequences. This may be because the cycle-to-cycle feedback mechanisms are physically limited to one or two cycles.
Journal Article

Assessment of Multiple Injection Strategies in a Direct-Injection Hydrogen Research Engine

2009-06-15
2009-01-1920
Hydrogen is widely considered a promising fuel for future transportation applications for both, internal combustion engines and fuel cells. Due to their advanced stage of development and immediate availability hydrogen combustion engines could act as a bridging technology towards a wide-spread hydrogen infrastructure. Although fuel cell vehicles are expected to surpass hydrogen combustion engine vehicles in terms of efficiency, the difference in efficiency might not be as significant as widely anticipated [1]. Hydrogen combustion engines have been shown capable of achieving efficiencies of up to 45 % [2]. One of the remaining challenges is the reduction of nitric oxide emissions while achieving peak engine efficiencies. This paper summarizes research work performed on a single-cylinder hydrogen direct injection engine at Argonne National Laboratory.
Journal Article

Characterization of the Near-Field Spray and Internal Flow of Single-Hole and Multi-Hole Sac Nozzles using Phase Contrast X-Ray Imaging and CFD

2011-04-12
2011-01-0681
It is well know that the internal flow field and nozzle geometry affected the spray behavior, but without high-speed microscopic visualization, it is difficult to characterize the spray structure in details. Single-hole diesel injectors have been used in fundamental spray research, while most direct-injection engines use multi-hole nozzle to tailor to the combustion chamber geometry. Recent engine trends also use smaller orifice and higher injection pressure. This paper discussed the quasi-steady near-nozzle diesel spray structures of an axisymmetric single-hole nozzle and a symmetric two-hole nozzle configuration, with a nominal nozzle size of 130 μm, and an attempt to correlate the observed structure to the internal flow structure using computational fluid dynamic (CFD) simulation. The test conditions include variation of injection pressure from 30 to 100 MPa, using both diesel and biodiesel fuels, under atmospheric condition.
Journal Article

Comparison of Near-Field Structure and Growth of a Diesel Spray Using Light-Based Optical Microscopy and X-Ray Radiography

2014-04-01
2014-01-1412
A full understanding and characterization of the near-field of diesel sprays is daunting because the dense spray region inhibits most diagnostics. While x-ray diagnostics permit quantification of fuel mass along a line of sight, most laboratories necessarily use simple lighting to characterize the spray spreading angle, using it as an input for CFD modeling, for example. Questions arise as to what is meant by the “boundary” of the spray since liquid fuel concentration is not easily quantified in optical imaging. In this study we seek to establish a relationship between spray boundary obtained via optical diffused backlighting and the fuel concentration derived from tomographic reconstruction of x-ray radiography. Measurements are repeated in different facilities at the same specified operating conditions on the “Spray A” fuel injector of the Engine Combustion Network, which has a nozzle diameter of 90 μm.
Technical Paper

Cycle-to-Cycle Variations in Multi-Cycle Engine RANS Simulations

2016-04-05
2016-01-0593
Reynolds-averaged Navier-Stokes (RANS) modeling is expected to deliver an ensemble-averaged result for the majority of turbulent flows. This could lead to the conclusion that multi-cycle internal combustion engine (ICE) simulations performed using RANS must exhibit a converging numerical solution after a certain number of consecutive cycles. However, for some engine configurations unsteady RANS simulations are not guaranteed to deliver an ensemble-averaged result. In this paper it is shown that, when using RANS modeling to simulate multiple engine cycles, the cycle-to-cycle variations (CCV) generated from different initial conditions at each cycle are not damped out even after a large number of cycles. A single-cylinder GDI research engine is simulated using RANS modeling and the numerical results for 20 consecutive engine cycles are evaluated for two specific operating conditions.
Technical Paper

Effects of Ignition and Injection Perturbation under Lean and Dilute GDI Engine Operation

2015-09-01
2015-01-1871
Turbocharged gasoline direct injection (GDI) engines are quickly becoming more prominent in light-duty automotive applications because of their potential improvements in efficiency and fuel economy. While EGR dilute and lean operation serve as potential pathways to further improve efficiencies and emissions in GDI engines, they also pose challenges for stable engine operation. Tests were performed on a single-cylinder research engine that is representative of current automotive-style GDI engines. Baseline cases were performed under steady-state operating conditions where combustion phasing and dilution were varied to determine the effects on indicated efficiency and combustion stability. Sensitivity studies were then carried out by introducing binary low-high perturbation of spark timing and injection duration on a cycle-by-cycle basis under EGR dilute and lean operation to determine dominant feedback mechanisms.
Technical Paper

Efficiency Improved Combustion System for Hydrogen Direct Injection Operation

2010-10-25
2010-01-2170
This paper reports on research activities aiming to improve the efficiency of direct injected, hydrogen powered internal combustion engines. In a recent major change in the experimental setup the hydrogen single cylinder research engine at Argonne National Laboratory was upgraded to a new engine geometry providing increased compression ratio and a longer piston stroke compared to its predecessor. The higher compression ratio and the more advantageous volume to surface ratio of the combustion chamber are both intended to improve the overall efficiency of the experimental setup. Additionally, a new series of faster acting, piezo-activated injectors is used with the new engine providing increased flexibility for the optimization of DI injection strategies. This study focuses on the comparison of experimental data of the baseline versus the improved single cylinder research engine for similar engine operating conditions.
Technical Paper

Evaluation of Diesel Spray-Wall Interaction and Morphology around Impingement Location

2018-04-03
2018-01-0276
The necessity to study spray-wall interaction in internal combustion engines is driven by the evidence that fuel sprays impinge on chamber and piston surfaces resulting in the formation of wall films. This, in turn, may influence the air-fuel mixing and increase the hydrocarbon and particulate matter emissions. This work reports an experimental and numerical study on spray-wall impingement and liquid film formation in a constant volume combustion vessel. Diesel and n-heptane were selected as test fuels and injected from a side-mounted single-hole diesel injector at injection pressures of 120, 150, and 180 MPa on a flat transparent window. Ambient and plate temperatures were set at 423 K, the fuel temperature at 363 K, and the ambient densities at 14.8, 22.8, and 30 kg/m3. Simultaneous Mie scattering and schlieren imaging were carried out in the experiment to perform a visual tracking of the spray-wall interaction process from different perspectives.
Journal Article

High-Resolution X-Ray and Neutron Computed Tomography of an Engine Combustion Network Spray G Gasoline Injector

2017-03-28
2017-01-0824
Given the importance of the fuel-injection process on the combustion and emissions performance of gasoline direct injected engines, there has been significant recent interest in understanding the fluid dynamics within the injector, particularly around the needle and through the nozzles. The pressure losses and transients that occur in the flow passages above the needle are also of interest. Simulations of these injectors typically use the nominal design geometry, which does not always match the production geometry. Computed tomography (CT) using x-ray and neutron sources can be used to obtain the real geometry from production injectors, but there are trade-offs in using these techniques. X-ray CT provides high resolution, but cannot penetrate through the thicker parts of the injector. Neutron CT has excellent penetrating power but lower resolution.
Journal Article

Influence of injection strategy in a high-efficiency hydrogen direct injection engine

2011-08-30
2011-01-2001
Energy security and climate change are two of the main drivers for development of sustainable and renewable transportation solutions. Entities around the globe have been working on strategic plans to reduce energy consumption and curb greenhouse gas emissions. In this context hydrogen is frequently mentioned as the fuel and energy carrier of the future. The U.S. Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FCVT) Program has identified hydrogen-powered internal combustion engine (ICE) vehicles as an important mid-term technology on the path to a large-scale hydrogen economy. DOE has set challenging goals for hydrogen internal combustion engines including 45% peak brake thermal efficiency (BTE). This paper summarizes recent research engine test results employing hydrogen direct injection with different injection strategies.
Journal Article

LES of Diesel and Gasoline Sprays with Validation against X-Ray Radiography Data

2015-04-14
2015-01-0931
This paper focuses on detailed numerical simulations of direct injection diesel and gasoline sprays from production grade, multi-hole injectors. In a dual-fuel engine the direct injection of both the fuels can facilitate appropriate mixture preparation prior to ignition and combustion. Diesel and gasoline sprays were simulated using high-fidelity Large Eddy Simulations (LES) with the dynamic structure sub-grid scale model. Numerical predictions of liquid penetration, fuel density distribution as well as transverse integrated mass (TIM) at different axial locations versus time were compared against x-ray radiography data obtained from Argonne National Laboratory. A necessary, but often overlooked, criterion of grid-convergence is ensured by using Adaptive Mesh Refinement (AMR) for both diesel and gasoline. Nine different realizations were performed and the effects of random seeds on spray behavior were investigated.
Journal Article

Mixture Formation in Direct Injection Hydrogen Engines: CFD and Optical Analysis of Single- and Multi-Hole Nozzles

2011-09-11
2011-24-0096
This paper describes the validation of a CFD code for mixture preparation in a direct injection hydrogen-fueled engine. The cylinder geometry is typical of passenger-car sized spark-ignited engines, with a centrally located injector. A single-hole and a 13-hole nozzle are used at about 100 bar and 25 bar injection pressure. Numerical results from the commercial code Fluent (v6.3.35) are compared to measurements in an optically accessible engine. Quantitative planar laser-induced fluorescence provides phase-locked images of the fuel mole-fraction, while single-cycle visualization of the early jet penetration is achieved by a high-speed schlieren technique. The characteristics of the computational grids are discussed, especially for the near-nozzle region, where the jets are under-expanded. Simulation of injection from the single-hole nozzle yields good agreement between numerical and optical results in terms of jet penetration and overall evolution.
Technical Paper

Modeling Heat Loss through Pistons and Effect of Thermal Boundary Coatings in Diesel Engine Simulations using a Conjugate Heat Transfer Model

2016-10-17
2016-01-2235
Heat loss through wall boundaries play a dominant role in the overall performance and efficiency of internal combustion engines. Typical engine simulations use constant temperature wall boundary conditions [1, 2, 3]. These boundary conditions cannot be estimated accurately from experiments due to the complexities involved with engine combustion. As a result, they introduce a large uncertainty in engine simulations and serve as a tuning parameter. Modeling the process of heat transfer through the solid walls in an unsteady engine computational fluid dynamics (CFD) simulation can lead to the development of higher fidelity engine models. These models can be used to study the impact of heat loss on engine efficiency and explore new design methodologies that can reduce heat losses. In this work, a single cylinder diesel engine is modeled along with the solid piston coupled to the fluid domain.
Technical Paper

Multi-Dimensional Modeling and Validation of Combustion in a High-Efficiency Dual-Fuel Light-Duty Engine

2013-04-08
2013-01-1091
Using gasoline and diesel simultaneously in a dual-fuel combustion system has shown effective benefits in terms of both brake thermal efficiency and exhaust emissions. In this study, the dual-fuel approach is applied to a light-duty spark ignition (SI) gasoline direct injection (GDI) engine. Three combustion modes are proposed based on the engine load, diesel micro-pilot (DMP) combustion at high load, SI combustion at low load, and diesel assisted spark-ignition (DASI) combustion in the transition zone. Major focus is put on the DMP mode, where the diesel fuel acts as an enhancer for ignition and combustion of the mixture of gasoline, air, and recirculated exhaust gas. Computational fluid dynamics (CFD) is used to simulate the dual-fuel combustion with the final goal of supporting the comprehensive optimization of the main engine parameters.
Technical Paper

Multi-dimensional Modeling of Non-equilibrium Plasma for Automotive Applications

2018-04-03
2018-01-0198
While spark-ignition (SI) engine technology is aggressively moving towards challenging (dilute and boosted) combustion regimes, advanced ignition technologies generating non-equilibrium types of plasma are being considered by the automotive industry as a potential replacement for the conventional spark-plug technology. However, there are currently no models that can describe the low-temperature plasma (LTP) ignition process in computational fluid dynamics (CFD) codes that are typically used in the multi-dimensional engine modeling community. A key question for the engine modelers that are trying to describe the non-equilibrium ignition physics concerns the plasma characteristics. A key challenge is also represented by the plasma formation timescale (nanoseconds) that can hardly be resolved within a full engine cycle simulation.
Technical Paper

Numerical Analysis of Fuel Impacts on Advanced Compression Ignition Strategies for Multi-Mode Internal Combustion Engines

2020-04-14
2020-01-1124
Multi-mode combustion strategies may provide a promising pathway to improve thermal efficiency in light-duty spark ignition (SI) engines by enabling switchable combustion modes, wherein an engine may operate under advanced compression ignition (ACI) at low load and spark-assisted ignition at high load. The extension from the SI mode to the ACI mode requires accurate control of intake charge conditions; e.g., pressure, temperature and equivalence ratio, in order to achieve stable combustion phasing and rapid mode-switches. This study presents results from computational fluid dynamics (CFD) analysis to gain physical insights into mixture charge formation and combustion dynamics pertaining to auto-ignition processes.
Technical Paper

Numerical Investigation of Combustion in a Lean Burn Gasoline Engine

2013-09-08
2013-24-0029
This research effort focuses on lean-burn combustion in gasoline internal combustion engines. Gasoline is largely known to be characterized by narrow flammability range, which makes the use of ultra-lean mixtures very challenging. In order to fully explore the gasoline lean burn potential, a promising strategy should combine advanced intake geometries, injection strategies, and ignition technologies. In this paper, a CFD methodology is developed in order to provide proper insight into lean-burn gasoline combustion. A baseline homogenous/lean case is analyzed and numerical results are validated against engine data. Two critical issues are addressed. First, a relatively large detailed mechanism is validated against the experimental data for extreme operating conditions (low pressure values, lean mixtures). The large cycle-to-cycle variation characterizing lean combustion is shown experimentally.
Technical Paper

Numerical Investigation of Spark Ignition Events in Lean and Dilute Methane/Air Mixtures Using a Detailed Energy Deposition Model

2016-04-05
2016-01-0609
It is beneficial but challenging to operate spark-ignition engines under highly lean and dilute conditions. The unstable ignition behavior can result in downgraded combustion performance in engine cylinders. Numerical approach is serving as a promising tool to identify the ignition requirements by providing insight into the complex physical/chemical phenomena. An effort to simulate the early stage of flame kernel initiation in lean and dilute fuel/air mixture has been made and discussed in this paper. The simulations are set to validate against laboratory results of spark ignition behavior in a constant volume combustion vessel. In order to present a practical as well as comprehensive ignition model, the simulations are performed by taking into consideration the discharge circuit analysis, the detailed reaction mechanism, and local heat transfer between the flame kernel and spark plug.
Technical Paper

Numerical Simulation of Engines Fuelled by Hydrogen and Natural Gas Mixtures

2007-07-23
2007-01-1901
The use of hydrogen (H2) as a fuel for urban private and public transport may represent a major solution to reduce pollutant emissions and CO2 production in urban areas. Looking for short-term solutions, the introduction of moderate quantities of H2 (up to 30%) into Natural Gas (NG) SI engines may be a feasible solution to get a faster combustion process, and therefore less HC and CO2 emissions, and a slight NOx increase which may be potentially limited by the adoption of lean-burn engine control strategies. However, concurrent effects of volumetric efficiency reduction and maximum temperature in the combustion chamber require a careful optimization of operating conditions to fully exploit the H2 potential and to determine the most convenient H2/NG mixture ratio. In that context, 3D numerical tools may be useful to analyze the effect of H2 introduction on engine performance.
X