Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Energetic Design and Optimization of a Large Photovoltaic Stratospheric Unconventional Feeder Airship

This paper presents a model of energetic consumption and photovoltaic production for a large airship which acts as feeder connecting the ground with a large cruiser. The analysis of energy needs and productivity allows defining both an ideal sizing and operative mission profiles. The specialised mission of this airship is to ascent and descent. It includes also the connection with the airport buildings on the ground and with the cruiser at high altitude. Photovoltaic production has evaluated in terms of hydrogen and electric propulsion. They have estimated both and a calculation methodology has proposed. The evaluation has supported by CFD evaluations on aerodynamic behaviour of the system at various altitudes.
Technical Paper

Energy Self Sufficient Aircrafts Can Become Reality through New Propulsion Design Approaches

This paper focuses on the key problem of future aeronautics: which relates on energy efficiency and environmental footprint on a scientific point of view. Reducing emissions and increasing the energy efficiency would be both a key element to propel the market and increase the diffusion of personal aerial transport against ground transportation. Novel vehicle concepts and systems will be necessary to propel this innovation which could revolutionize our way of moving. This paper approaches an energetic preliminary design of a vehicle concept which could fulfill this social and cultural objective. Low cost energy efficient vehicles, which could be suitable for personal use with a high economic efficiency and without needs of airports, seem actually a real dream. Otherwise, is it a feasible goal or a scientific dream? Otherwise, a design method based on first and second law and thermodynamic and constructal law could allow reaching those goals.
Technical Paper

Optimization of Airships with Constructal Design for Efficiency Method

It is possible to define a novel optimization method, which aims to overcome the traditional Multidisciplinary Design Optimization. It aims to improve Constructal design method to optimize complex systems such as vehicles. The proposed method is based on the constructal principle and it is articulated in different stages: 1 preliminary top-down design process to ensure that the full system has one of the best configurations for the specified goals (contour conditions for constructal optimization could be stated ensuring an effective optimization at full-system level). 2 constructal optimization of the elemental components of the system to maximize the system performances; 3 eventually a competitive comparison between different configurations choosing the better one. The definition of an optimized flying vehicle (an airship) has been produced an example of this improved design method with the objective of minimizing the energy consumption during flight.