Refine Your Search

Search Results

Standard

Automatic Transmission Intake Filter Test Procedure

2018-08-28
WIP
J2312
This test procedure is intended to apply to hydraulic pump suction filters and strainers used in automotive automatic transmissions that include hydraulic power pumps. The various paragraphs of Section 5, “Test Procedures,” include a variety of tests and alternative tests that are not applicable to all filters and applications, so the engineer must specify which tests are to be performed for a particular application. These test procedures are intended to evaluate filter functional performance characteristics only, durability is not evaluated under this standard. Filter design requirements must be specified by the engineer on the filter assembly drawing, an applicable engineering specification, or summarized on an application data sheet similar to that found in this recommended practice. See Figure 6, “Filter Assembly Application and Data Sheet.” Pressure circuit filters, both barrier and system contamination control types, are not covered under this standard.
Standard

Automatic Transmission Intake Filter Test Procedure

2013-05-14
CURRENT
J2312_201305
This test procedure is intended to apply to hydraulic pump suction filters and strainers used in automotive automatic transmissions that include hydraulic power pumps. The various paragraphs of Section 5, “Test Procedures,” include a variety of tests and alternative tests that are not applicable to all filters and applications, so the engineer must specify which tests are to be performed for a particular application. These test procedures are intended to evaluate filter functional performance characteristics only, durability is not evaluated under this standard. Filter design requirements must be specified by the engineer on the filter assembly drawing, an applicable engineering specification, or summarized on an application data sheet similar to that found in this recommended practice. See Figure 6, “Filter Assembly Application and Data Sheet.” Pressure circuit filters, both barrier and system contamination control types, are not covered under this standard.
Standard

Glossary of Terms - Lubricated Friction Systems

2012-03-19
CURRENT
J1646_201203
This SAE Recommended Practice defines the principal terms and equations pertaining to automotive automatic transmission clutch plate, band, or other wet-friction systems. The terms apply directly to friction-system testing as is typically conducted on inertia-stop test equipment. Some terms can be directly applied to the analysis of friction in the transmission or brake assembly and other friction-test equipment. The glossary presents terms used to describe the set-up, testing, and results of tests as shown in Figure 1, which were taken on a clutch SAE No. 2 machine. The glossary is intended to provide a collection of definitions in the hope of eliminating confusion in development and their application to passenger cars and trucks. This document focuses on the terminology of friction-system testing. References for this type of testing are shown in Section 2.
Standard

Glossary of Terms-Lubricated Friction Systems

1996-07-01
HISTORICAL
J1646_199607
This SAE Recommended Practice defines the principal terms and equations pertaining to automotive automatic transmission clutch plate, band, or other wet-friction systems. The terms apply directly to friction-system testing as is typically conducted on inertia-stop test equipment. Some terms can be directly applied to the analysis of friction in the transmission or brake assembly and other friction-test equipment. The glossary presents terms used to describe the set-up, testing, and results of tests as shown in Figure 1, which were taken on a clutch SAE No. 2 machine. The glossary is intended to provide a collection of definitions in the hope of eliminating confusion in terminology and a common set of terms for improving the state-of-the-art of friction-system development and their application to passenger cars and trucks. This document focuses on the terminology of friction-system testing. Reference for this type of testing are shown in Section 2.
Standard

Hydrodynamic Drive Test Code

1989-06-01
HISTORICAL
J643_198906
The range of test conditions on the dynamometer shall be sufficient to determine the primary operating characteristics corresponding to the full range of vehicle operations. The characteristics to be determined are: a. Torque ratio versus speed ratio and output speed b. Input speed versus speed ratio and output speed c. Efficiency versus speed ratio and output speed d. Capacity factor versus speed ratio and output speed e. Input torque versus input speed
Standard

Hydrodynamic Drive Test Code

2018-12-05
CURRENT
J643_201812
The range of test conditions on the dynamometer shall be sufficient to determine the primary operating characteristics corresponding to the full range of vehicle operations. The characteristics to be determined are: a Torque ratio versus speed ratio and output speed b Input speed versus speed ratio and output speed c Efficiency versus speed ratio and output speed d Capacity factor versus speed ratio and output speed e Input torque versus input speed NOTE: For more information about these characteristics and the design of hydrodynamic drives, refer to “Design Practices: Passenger Car Automatic Transmissions,” SAE Advances in Engineering, AE-18 (Third Ed.) or AE-29 (Fourth Ed.).
Standard

Hydrodynamic Drive Test Code

2011-04-04
HISTORICAL
J643_201104
The range of test conditions on the dynamometer shall be sufficient to determine the primary operating characteristics corresponding to the full range of vehicle operations. The characteristics to be determined are: a Torque ratio versus speed ratio and output speed b Input speed versus speed ratio and output speed c Efficiency versus speed ratio and output speed d Capacity factor versus speed ratio and output speed e Input torque versus input speed NOTE: For more information about these characteristics and the design of hydrodynamic drives, see “Design Practices—Passenger Car Automatic Transmissions,” SAE Advances in Engineering, AE18 or AE29
Standard

Hydrodynamic Drive Test Code

1979-06-01
HISTORICAL
J643B_197906
The range of test conditions on the dynamometer shall be sufficient to determine the primary operating characteristics corresponding to the full range of vehicle operations. The characteristics to be determined are: a. Torque ratio versus speed ratio and output speed b. Input speed versus speed ratio and output speed c. Efficiency versus speed ratio and output speed d. Capacity factor versus speed ratio and output speed e. Input torque versus input speed
Standard

Hydrodynamic Drives Terminology

2012-06-04
HISTORICAL
J641_201206
Since the torque converter and fluid coupling are commonly used components of automatic transmissions in industry, the SAE appointed a committee to standardize terminology, test procedure, data recording, design symbols, and so forth, in this field. The following committee recommendations will facilitate a clear understanding for engineering discussions, comparisons, and the preparation of technical papers. The recommended usages represent the predominant practice or the acceptable practice. Where agreement is not complete, alternates have been included for clarification. This SAE Recommended Practice deals only with the physical parts and dimensions and does not attempt to standardize the design considerations, such as the actual fluid flow angle resulting from the physical blade shape.
Standard

Hydrodynamic Drives Terminology

1978-04-01
HISTORICAL
J641B_197804
Since the torque converter and fluid coupling are commonly used components of automatic transmissions in industry, the SAE appointed a committee to standardize terminology, test procedure, data recording, design symbols, and so forth, in this field. The following committee recommendations will facilitate a clear understanding for engineering discussions, comparisons, and the preparation of technical papers. The recommended usages represent the predominant practice or the acceptable practice. Where agreement is not complete, alternates have been included for clarification. EXAMPLE: Two systems of blade angle designations are described. Consequently when a blade angle is specified, the system should be designated. This SAE Recommended Practice deals only with the physical parts and dimensions and does not attempt to standardize the design considerations, such as the actual fluid flow angle resulting from the physical blade shape.
Standard

Hydrodynamic Drives Terminology

1975-01-01
HISTORICAL
J641A_197501
Since the torque converter and fluid coupling are commonly used components of automatic transmissions in industry, the SAE appointed a committee to standardize terminology, test procedure, data recording, design symbols, and so forth, in this field. The following committee recommendations will facilitate a clear understanding for engineering discussions, comparisons, and the preparation of technical papers. The recommended usages represent the predominant practice or the acceptable practice. Where agreement is not complete, alternates have been included for clarification. EXAMPLE: Two systems of blade angle designations are described. Consequently when a blade angle is specified, the system should be designated. This SAE Recommended Practice deals only with the physical parts and dimensions and does not attempt to standardize the design considerations, such as the actual fluid flow angle resulting from the physical blade shape.
Standard

Low Speed Continuous Slip SAE No. 2 µPVT Procedure

2018-01-30
CURRENT
J2964_201801
This SAE document is intended as the definition of a standard test, which may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering its use. The SAE No. 2 friction test is used to evaluate the friction characteristics of automatic transmission plate clutches with automotive transmission fluid combinations. The specific purpose of this document is to define a µPVT test for the evaluation of the variation of wet friction system low speed slip characteristics as a function of speed, temperature, and pressure. This procedure is intended as a suggested method for both suppliers and end users. The only variables selected by the supplier or user of the friction system are: Friction material Fluid Reaction plates Oil flow (optional) These four variables must be clearly identified when reporting the results of this test.
Standard

Passenger Car and Light Truck Automatic Transmission and Automatic Transaxle Test Code

2015-06-30
CURRENT
J651_201506
The extent of test conditions on the dynamometer must be sufficient to determine the efficiency characteristics corresponding to the following range of vehicle operations in all gear ratios with locked torque converters (open converter can also be done where appropriate and noted). a Efficiency versus output speed versus input torque b Torque ratio versus output speed c Input speed versus output speed d Output torque versus output speed e Parasitic loss versus input speed (spin losses) f Cooler flow g Output torque bias (front wheel drive transaxles)
Standard

Rectangular Cross Section Polymeric Sealing Rings

2019-10-09
CURRENT
J2310_201910
The purpose of this SAE Recommended Practice is to establish guidelines for the automatic transmission and hydraulic systems engineer to design rectangular cross section seals for rotating and static grooved shaft applications. Also included are property comparisons of polymeric materials suitable for these applications. Historically, material covered in this document is not intended to include aluminum contact applications.
Standard

Rectangular Cross Section Polymeric Sealing Rings

2011-05-02
HISTORICAL
J2310_201105
The purpose of this SAE Recommended Practice is to establish guidelines for the automatic transmission and hydraulic systems engineer to design rectangular cross section seals for rotating and static grooved shaft applications. Also included are property comparisons of polymeric materials suitable for these applications. Historically, material covered in this document is not intended to include aluminum contact applications.
Standard

SAE Band Friction Test Machine Guidelines

2012-03-19
CURRENT
J1499_201203
This SAE Recommended Practice is intended as a guide toward implementation of a standard practice but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering its use. The SAE band friction test machine is used to evaluate the frictional characteristics of automatic transmission band friction materials with automatic transmission fluids. It can also be used to conduct durability tests on wet friction systems.
Standard

SAE No. 2 Clutch Friction Test Machine Guidelines

2012-03-19
CURRENT
J286_201203
This SAE Recommended Practice is intended as a guide toward implementation of a standard practice but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering its use. The SAE No. 2 Friction Test Machine is used to evaluate the friction characteristics of automatic transmission plate clutch with automotive transmission fluids. It can also be used to conduct durability tests on wet friction systems. This document is intended for common use by both suppliers and end users to define minimum test machine requirements to allow objective comparisons of wet friction material system performance.
Standard

SAE No. 2 Friction Test Machine 3600 r/min Stepped Power Test

2012-05-31
HISTORICAL
J2487_201205
This SAE Recommended Practice is intended as the definition of a standard test, but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering its use. The SAE No. 2 Friction Test Machine is used to evaluate the friction characteristics of automatic transmission plate clutches with automotive transmission fluids. It can also be used to conduct durability tests on wet friction systems. The specific purpose of this document is to define a 3600 r/min Stepped Power Test for the evaluation of wet friction system performance variation as a function of power level. This procedure uses an initial engagement speed of 3600 r/min and is intended as a standard procedure for common use by both suppliers and end users.
Standard

SAE No. 2 Friction Test Machine 3600 rpm Stepped Power Test

2019-05-23
CURRENT
J2487_201905
This SAE Recommended Practice is intended as the definition of a standard test, but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering its use. The SAE No. 2 Friction Test Machine is used to evaluate the friction characteristics of automatic transmission plate clutches with automotive transmission fluids. It can also be used to conduct durability tests on wet friction systems. The specific purpose of this document is to define a 3600 rpm Stepped Power Test for the evaluation of wet friction system performance variation as a function of power level. This procedure uses an initial engagement speed of 3600 rpm and is intended as a standard procedure for common use by both suppliers and end users.
Standard

SAE No. 2 Friction Test Machine 6000 rpm Stepped Power Test

2019-07-24
CURRENT
J2488_201907
This SAE Recommended Practice is intended as the definition of a standard test, but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering its use. The SAE No. 2 Friction Test Machine is used to evaluate the friction characteristics of automatic transmission plate clutches with automotive transmission fluids. It can also be used to conduct durability tests on wet friction systems. The specific purpose of this document is to define a 6000 rpm stepped power test for the evaluation of wet friction system performance variation as a function of power level. This procedure uses an initial engagement speed of 6000 rpm and is intended as a standard procedure for common use by both suppliers and end users.
X