Refine Your Search

Topic

Search Results

Technical Paper

Advanced Automatic Transmission Model Validation Using Dynamometer Test Data

2014-04-01
2014-01-1778
As a result of increasingly stringent regulations and higher customer expectations, auto manufacturers have been considering numerous technology options to improve vehicle fuel economy. Transmissions have been shown to be one of the most cost-effective technologies for improving fuel economy. Over the past couple of years, transmissions have significantly evolved and impacted both performance and fuel efficiency. This study validates the shifting control of advanced automatic transmission technologies in vehicle systems by using Argonne National Laboratory's model-based vehicle simulation tool, Autonomie. Different midsize vehicles, including several with automatic transmission (6-speeds, 7-speeds, and 8-speeds), were tested at Argonne's Advanced Powertrain Research Facility (APRF). For the vehicles, a novel process was used to import test data.
Journal Article

Automated Model Initialization Using Test Data

2017-03-28
2017-01-1144
Building a vehicle model with sufficient accuracy for fuel economy analysis is a time-consuming process, even with the modern-day simulation tools. Obtaining the right kind of data for modeling a vehicle can itself be challenging, given that while OEMs advertise the power and torque capability of their engines, the efficiency data for the components or the control algorithms are not usually made available for independent verification. The U.S. Department of Energy (DOE) funds the testing of vehicles at Argonne National Laboratory, and the test data are publicly available. Argonne is also the premier DOE laboratory for the modeling and simulation of vehicles. By combining the resources and expertise with available data, a process has been created to automatically develop a model for any conventional vehicle that is tested at Argonne. This paper explains the process of analyzing the publicly available test data and computing the parameters of various components from the analysis.
Technical Paper

Axial Flux Variable Gap Motor: Application in Vehicle Systems

2002-03-04
2002-01-1088
Alternative electric motor geometry with potentially increased efficiency is being considered for hybrid electric vehicle applications. An axial flux motor with a dynamically adjustable air gap (i.e., mechanical field weakening) has been tested, analyzed, and modeled for use in a vehicle simulation tool at Argonne National Laboratory. The advantage of adjusting the flux is that the motor torque-speed characteristics can better match the vehicle load. The challenge in implementing an electric machine with these qualities is to develop a control strategy that takes advantage of the available efficiency improvements without using excessive energy to mechanically adjust the air gap and thus reduce the potential energy savings. Motor efficiency was mapped in terms of speed, torque, supply voltage, and rotor-to-stator air gap.
Technical Paper

Complex System Engineering Simulation through Co-Simulation

2014-04-01
2014-01-1106
Many of today's advanced simulation tools are suitable for modeling specific systems, but they provide rather limited support for automated model building and management. The diverse tools available for modeling different components of a vehicle make it all the more challenging to comprehend their integration and interactions and analyze the complete system. In addition, the complexities and sizes of the models require a better use of computing resources, such as multicore or remote processing, to greatly reduce the simulation time. In this paper we describe how modern software techniques can support modeling and design activities, with the objective to create system models quickly by assembling them in a “plug-and-play” architecture. System models can be integrated, co-simulated, and reused regardless of the environment in which they are developed, and their simulation results can be consolidated for analysis into a single tool.
Technical Paper

Control Analysis and Model Validation for BMW i3 Range Extender

2017-03-28
2017-01-1152
The control analysis and model validation of a 2014 BMW i3-Range Extender (REX) was conducted based on the test data in this study. The vehicle testing was performed on a chassis dynamometer set within a thermal chamber at the Advanced Powertrain Research Facility at Argonne National Laboratory. The BMW i3-REX is a series-type plug-in hybrid range extended vehicle which consists of a 0.65L in-line 2-cylinder range-extending engine with a 26.6kW generator, 125kW permanent magnet synchronous AC motor, and 18.8kWh lithium-ion battery. Both component and vehicle model including thermal aspects, were developed based on the test data. For example, the engine fuel consumption rate, battery resistance, or cabin HVAC energy consumption are affected by the temperature. Second, the vehicle-level control strategy was analyzed at normal temperature conditions (22°C ambient temperature). The analysis focuses on the engine on/off strategy, battery SOC balancing, and engine operating conditions.
Journal Article

Control Analysis under Different Driving Conditions for Peugeot 3008 Hybrid 4

2014-04-01
2014-01-1818
This paper includes analysis results for the control strategy of the Peugeot 3008 Hybrid4, a diesel-electric hybrid vehicle, under different thermal conditions. The analysis was based on testing results obtained under the different thermal conditions in the Advanced Powertrain Research Facility (APRF) at Argonne National Laboratory (ANL). The objectives were to determine the principal concepts of the control strategy for the vehicle at a supervisory level, and to understand the overall system behavior based on the concepts. Control principles for complex systems are generally designed to maximize the performance, and it is a serious challenge to determine these principles without detailed information about the systems. By analyzing the test results obtained in various driving conditions with the Peugeot 3008 Hybrid4, we tried to figure out the supervisory control strategy.
Technical Paper

Evolution of Hydrogen Fueled Vehicles Compared to Conventional Vehicles from 2010 to 2045

2009-04-20
2009-01-1008
Fuel cell vehicles are undergoing extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and there is limited demand for hydrogen at present, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. This paper compares the fuel economy potential of hydrogen powertrains to conventional gasoline vehicles. Several timeframes are considered: 2010, 2015, 2030, and 2045. To address the technology status uncertainty, a triangular distribution approach was implemented for each component technology. The fuel consumption and cost of five powertrain configurations will be discussed and compared with the conventional counterpart.
Journal Article

Fuel Consumption and Cost Potential of Different Plug-In Hybrid Vehicle Architectures

2015-04-14
2015-01-1160
Plug-in Hybrid Electric Vehicles (PHEVs) have demonstrated the potential to provide significant reduction in fuel use across a wide range of dynamometer test driving cycles. Companies and research organizations are involved in numerous research activities related to PHEVs. One of the current unknowns is the impact of driving behavior and standard test procedure on the true benefits of PHEVs from a worldwide perspective. To address this issue, five different PHEV powertrain configurations (input split, parallel, series, series-output split and series-parallel), implemented on vehicles with different all-electric ranges (AERs), were analyzed on three different standard cycles (i.e., Urban Dynamometer Driving Schedule, Highway Fuel Economy Test, and New European Driving Cycle). Component sizes, manufacturing cost, and fuel consumption were analyzed for a midsize car in model year 2020 through the use of vehicle system simulations.
Technical Paper

Fuel Efficient Speed Optimization for Real-World Highway Cruising

2018-04-03
2018-01-0589
This paper introduces an eco-driving highway cruising algorithm based on optimal control theory that is applied to a conventionally-powered connected and automated vehicle. Thanks to connectivity to the cloud and/or to infrastructure, speed limit and slope along the future route can be known with accuracy. This can in turn be used to compute the control variable trajectory that will minimize energy consumption without significantly impacting travel time. Automated driving is necessary to the implementation of this concept, because the chosen control variables (e.g., torque and gear) impact vehicle speed. An optimal control problem is built up where quadratic models are used for the powertrain. The optimization is solved by applying Pontryagin’s minimum principle, which reduces the problem to the minimization of a cost function with parameters called co-states.
Technical Paper

Honda Insight Validation Using PSAT

2001-08-20
2001-01-2538
Argonne National Laboratory (ANL), working with the Partnership for a New Generation of Vehicles (PNGV), maintains hybrid vehicle simulation software: the PNGV System Analysis Toolkit (PSAT). The importance of component models and the complexity involved in setting up optimized control strategies require validation of the models and controls developed in PSAT. Using ANL's Advanced Powertrain Test Facilities (APTF), more than 50 tests on the Honda Insight were used to validate the PSAT drivetrain configuration. Extensive instrumentation, including the half-shaft torque sensor, provides the data needed for through comparison of model results and test data. In this paper, we will first describe the process and the type of test used to validate the models. Then we will explain the tuning of the simulated vehicle control strategy, based on the analysis of the differences between test and simulation.
Technical Paper

Impact of Advanced Engine and Powertrain Technologies on Engine Operation and Fuel Consumption for Future Vehicles

2015-04-14
2015-01-0978
Near-term advances in spark ignition (SI) engine technology (e.g., variable value lift [VVL], gasoline direct injection [GDI], cylinder deactivation, turbo downsizing) for passenger vehicles hold promise of delivering significant fuel savings for vehicles of the immediate future. Similarly, trends in transmissions indicate higher (8-speed, 9-speed) gear numbers, higher spans, and a focus on downspeeding to improve engine efficiency. Dual-clutch transmissions, which exhibit higher efficiency in lower gears, than the traditional automatics, and are being introduced in the light-duty vehicle segment worldwide. Another development requiring low investment and delivering immediate benefits has been the adaptation of start-stop (micro hybrids or idle engine stop technology) technology in vehicles today.
Technical Paper

Impact of Connectivity and Automation on Vehicle Energy Use

2016-04-05
2016-01-0152
Connectivity and automation are increasingly being developed for cars and trucks, aiming to provide better safety and better driving experience. As these technologies mature and reach higher adoption rates, they will also have an impact on the energy consumption: Connected and Automated Vehicles (CAVs) may drive more smoothly, stop less often, and move at faster speeds, thanks to overall improvements to traffic flows. These potential impacts are not well studied, and any existing studies tend to focus solely on conventional engine-powered cars, leaving aside electrified vehicles such as Hybrid Electric Vehicles (HEVs) and Battery Electric Vehicles (BEVs). This work intends to address this issue by analyzing the energy impact of various CAV scenarios on different types of electric vehicles using high-fidelity models. The vehicles-all midsize, one HEV, one BEV, and a conventional-are modeled in Autonomie, a high-fidelity, forward-looking vehicle simulation tool.
Journal Article

Impact of Electric Drive Vehicle Technologies on Fuel Efficiency to Support 2017-2025 CAFE Regulations

2014-04-01
2014-01-1084
Manufacturers have been considering various technology options to improve vehicle fuel economy. Some of the most promising technologies are related to vehicle electrification. To evaluate the benefits of vehicle electrification to support the 2017-2025 CAFE regulations, a study was conducted to simulate many of the most common electric drive powertrains currently available on the market: 12V Micro Hybrid Vehicle (start/stop systems), Belt-integrated starter generator (BISG), Crank-integrated starter generator (CISG), Full Hybrid Electric Vehicle (HEV), PHEV with 20-mile all-electric range (AER) (PHEV20), PHEV with 40-mile AER (PHEV40), Fuel-cell HEV and Battery Electric vehicle with 100-mile AER (EV100). Different vehicle classes were also analyzed in the study process: Compact, Midsize, Small SUV, Midsize SUV and Pickup. This paper will show the fuel displacement benefit of each powertrain across vehicle classes.
Technical Paper

Integration of a Modal Energy and Emissions Model into a PNGV Vehicle Simulation Model, PSAT

2001-03-05
2001-01-0954
This paper describes the integration of a Modal Energy and Emissions Model (MEEM) into a hybrid-electric vehicle simulation model, the PNGV System Analytic Toolkits (PSAT). PSAT is a forward-looking computer simulation model for advanced-technology vehicles. MEEM is a vehicle fuel-consumption and emissions model developed by one of the authors for internal-combustion-engine (ICE) -powered vehicles. MEEM engine simulation module uses a power-demand physical model based on a parameterized analytical representation of engine fuel and emissions production. One major advantage of MEEM is that it does not rely on steady-state engine maps, which are usually not available for most production vehicles; rather, it depends on a list of engine parameters that are calibrated based on regular vehicle dynamometer testing. The integrated PSAT-MEEM model can be used effectively to predict fuel consumption and emissions of various ICE-powered vehicles with both conventional and hybrid power trains.
Technical Paper

Long Term Impact of Vehicle Electrification on Vehicle Weight and Cost Breakdown

2017-03-28
2017-01-1174
Today’s value proposition of plug-in hybrid electric vehicles (PHEV) and battery electric vehicles (BEV) remain expensive. While the cost of lithium batteries has significantly decreased over the past few years, more improvement is necessary for PHEV and BEV to penetrate the mass market. However, the technology and cost improvements of the primary components used in electrified vehicles such as batteries, electric machines and power electronics have far exceeded the improvements in the main components used in conventional vehicles and this trend is expected to continue for the foreseeable future. Today’s weight and cost structures of electrified vehicles differ substantially from that of conventional vehicles but that difference will shrink over time. This paper highlights how the weight and cost structures, both in absolute terms and in terms of split between glider and powertrain, converge over time.
Technical Paper

Midsize and SUV Vehicle Simulation Results for Plug-In HEV Component Requirements

2007-04-16
2007-01-0295
Because Plug-in Hybrid Electric Vehicles (PHEVs) substitute electrical power from the utility grid for fuel, they have the potential to reduce petroleum use significantly. However, adoption of PHEVs has been hindered by expensive, low-energy batteries. Recent improvements in Li-ion batteries and hybrid control have addressed battery-related issues and have brought PHEVs within reach. The FreedomCAR Office of Vehicle Technology has a program that studies the potential benefit of PHEVs. This program also attempts to clarify and refine the requirements for PHEV components. Because the battery appears to be the main technical barrier, both from a performance and cost perspective, the main efforts have been focused on that component. Working with FreedomCAR energy storage and vehicle experts, Argonne National Laboratory (Argonne) researchers have developed a process to define the requirements of energy storage systems for plug-in applications.
Technical Paper

Model Validation of the Chevrolet Volt 2016

2018-04-03
2018-01-0420
Validation of a vehicle simulation model of the Chevrolet Volt 2016 was conducted. The Chevrolet Volt 2016 is equipped with the new “Voltec” extended-range propulsion system introduced into the market in 2016. The second generation Volt powertrain system operates in five modes, including two electric vehicle modes and three extended-range modes. Model development and validation were conducted using the test data performed on the chassis dynamometer set in a thermal chamber of Argonne National Laboratory’s Advanced Powertrain Research Facility. First, the components of the vehicle, such as the engine, motor, battery, wheels, and chassis, were modeled, including thermal aspects based on the test data. For example, engine efficiency changes dependent on the coolant temperature, or chassis heating or air-conditioning operations according to the ambient and cabin temperature, were applied.
Technical Paper

Model Validation of the Honda Accord Plug-In

2016-04-05
2016-01-1151
This paper presents the validation of an entire vehicle model of the Honda Accord Plug-in Hybrid Electric Vehicle (PHEV), which has a new powertrain system that can be driven in both series and parallel hybrid drive using a clutch, including thermal aspects. The Accord PHEV is a series-parallel PHEV with about 21 km of all-electric range and no multi-speed gearbox. Vehicle testing was performed at Argonne’s Advanced Powertrain Research Facility on a chassis dynamometer set in a thermal chamber. First, components (engine, battery, motors and wheels) were modeled using the test data and publicly available assumptions. This includes calibration of the thermal aspects, such as engine efficiency as a function of coolant temperature. In the second phase, the vehicle-level control strategy, especially the energy management, was analyzed in normal conditions in both charge-depleting and charge-sustaining modes.
Technical Paper

Model-Based Fuel Economy Technology Assessment

2017-03-28
2017-01-0532
Many leading companies in the automotive industry have been putting tremendous amount of efforts into developing new designs and technologies to make their products more energy efficient. It is straightforward to evaluate the fuel economy benefit of an individual technology in specific systems and components. However, when multiple technologies are combined and integrated into a whole vehicle, estimating the impact without building and testing an actual vehicle becomes very complex, because the efficiency gains from individual components do not simply add up. In an early concept phase, a projection of fuel efficiency benefits from new technologies will be extremely useful; but in many cases, the outlook has to rely on engineer’s insight since it is impractical to run tests for all possible technology combinations.
Technical Paper

Model-Based Systems Engineering and Control System Development via Virtual Hardware-in-the-Loop Simulation

2010-10-19
2010-01-2325
Model-based control system design improves quality, shortens development time, lowers engineering cost, and reduces rework. Evaluating a control system's performance, functionality, and robustness in a simulation environment avoids the time and expense of developing hardware and software for each design iteration. Simulating the performance of a design can be straightforward (though sometimes tedious, depending on the complexity of the system being developed) with mathematical models for the hardware components of the system (plant models) and control algorithms for embedded controllers. This paper describes a software tool and a methodology that not only allows a complete system simulation to be performed early in the product design cycle, but also greatly facilitates the construction of the model by automatically connecting the components and subsystems that comprise it.
X