Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Analysis of Driving Parameters and Emissions for Real World Urban Driving Cycles using an on-board Measurement Method for a EURO 2 SI car

2007-07-23
2007-01-2066
A FTIR in-vehicle on-road emission measurement system was installed in a EURO 2 emissions compliant SI car to investigate exhaust emissions under different urban traffic conditions. The real time fuel consumption and vehicle traveling speed was measured and logged. The temperatures were measured along the exhaust pipe so as to monitor the thermal characteristics and efficiency of the catalyst. Two real world driving cycles were developed with different traffic conditions. One (WP cycle) was located in a quiet area with few traffic interference and the other one (HPL cycle) was in a busy area with more traffic variations. The test car was pre-warmed before each test to eliminate cold start effect. The driving parameters were analyzed for two real world cycles. The WP cycle had higher acceleration rate, longer acceleration mode and shorter steady speed driving mode and thus harsher than the HPL cycle.
Technical Paper

Characterization of Regulated and Unregulated Cold Start Emissions for Different Real World Urban Driving Cycles Using a SI Passenger Car

2008-06-23
2008-01-1648
An in-vehicle FTIR emission measurement system was used to investigate the exhaust emissions under different real world urban driving conditions. Five different driving cycles were developed based on real world urban driving conditions including urban free flow driving, junction maneuver, congested traffic and moderate speed cruising. The test vehicle was a EURO 2 emission compliant SI car equipped with temperature measurement along the exhaust pipe across the catalyst and real time fuel consumption measurement system. Both regulated and non-regulated emissions were measured and analyzed for different driving cycles. All journeys were started from cold. The engine warm up features and emissions as a function of engine warm up for different driving conditions were investigated.
Technical Paper

Comparison of Real World Emissions in Urban Driving for Euro 1-4 Vehicles Using a PEMS

2009-04-20
2009-01-0941
An on-board emission measurement system (PEMS), the Horiba OBS 1300, was installed in Euro 1-4 SI cars of the same model to investigate the impact of vehicle technology on exhaust emissions, under urban driving conditions with a fully warmed-up catalyst. A typical urban driving loop cycle was used with no traffic loading so that driver behavior without the influence of other traffic could be investigated. The results showed that under real world driving conditions the NOx emissions exceeded the legislated values and only at cruise was the NOx emissions below the legislated value. The higher NOx emissions during real-world driving have implications for higher urban Ozone formation. With the exception of the old EURO1 vehicle, HC and CO emissions were under control for all the vehicles, as these are dominated by cold start issues, which were not included in this investigation.
Technical Paper

Comparisons of the Exhaust Emissions for Different Generations of SI Cars under Real World Urban Driving Conditions

2008-04-14
2008-01-0754
EURO 1, 2 3 and 4 SI (Spark Ignition) Ford Mondeo passenger cars were compared for their real world cold start emissions using an on-board FTIR (Fourier Transform Infrared) exhaust emission measurement system. The FTIR system can measure up to 65 species including both regulated and non-regulated exhaust pollutants at a rate of 0.5 Hz. The driving parameters such as speed, fuel consumption and air/fuel ratio were logged. The coolant water, lube oil and exhaust temperatures were also recorded. A typical urban driving cycle including a loop and a section of straight road was used for the comparison test as it was similar to the legislative ECE15 urban driving cycle. Exhaust emissions were calculated for the whole journey average and compared to EU legislation. The cold start transient emissions were also investigated as a separate parameter and this was where there was the greatest difference between the four vehicles.
Technical Paper

Impact of Ambient Temperatures on Exhaust Thermal Characteristics during Cold Start for Real World SI Car Urban Driving Tests

2005-10-24
2005-01-3896
Thermal characteristics of SI engine exhaust during cold start and warm up period were investigated for different ambient temperatures (-2 to 32 °C). A Euro 1 emission compliance SI car was tested using a real world urban driving cycle to represent typical city driving patterns and simulate ECE15 urban driving cycle. The test car was equipped with 27 thermocouples along the engine and exhaust pipes so as to measure metal and exhaust gas temperatures along the engine, exhaust and catalyst. The characteristics of thermal properties of engine, exhaust system and catalyst were studied as a function of warm up time and ambient temperature. The temperature and time of the light-off of catalyst were investigated so as to evaluate the effect of thermal properties of the catalyst on emissions. The results show that the coolant water reached the full warm up about 5 minutes in summer and 9 minutes in winter after a cold start.
Journal Article

Impact of Driving Cycles on Greenhouse Gas Emissions and Fuel Economy for SI Car Real World Driving

2008-06-23
2008-01-1749
The transport sector is one of the major contributors to greenhouse gas emissions. This study investigated three greenhouse gases emitted from road transport: CO2, N2O and CH4 emissions as a function of engine warm up and driving cycles. Five different urban driving cycles were developed and used including free flow driving and congested driving. An in-vehicle FTIR (Fourier Transform Inferred) emission measurement system was installed on a EURO2 emission compliant SI (Spark Ignition) car for emissions measurement at a rate of 0.5 HZ under real world urban driving conditions. This emission measurement system was calibrated on a standard CVS (Constant Volume Sampling) measurement system and showed excellent agreement on CO2 measurement with CVS results. The N2O and CH4 measurement was calibrated using calibration gas in lab. A MAX710 real time in-vehicle fuel consumption measurement system was installed in the test vehicle and real time fuel consumption was then obtained.
Technical Paper

Impact of Traffic Conditions and Road Geometry on Real World Urban Emissions Using a SI Car

2007-04-16
2007-01-0308
A precision in-vehicle tail-pipe emission measurement system was installed in a EURO1 emissions compliant SI car and used to investigate the variability in tail-pipe emission generation at an urban traffic junction and uphill/downhill road, and thereby the impact of road topography on emissions. Exhaust gas and skin temperatures were also measured along the exhaust pipe of the instrumented vehicle, so the thermal characteristics and the efficiency of the catalyst could be monitored. Different turning movements (driving events) at the priority T-junction were investigated such as straight, left and right turns with and without stops. The test car was run until hot stable operating conditions were achieved before each test, thereby negating cold start effects.
Journal Article

Study of Thermal Characteristics and Emissions during Cold Start using an on-board Measuring Method for Modern SI Car Real World Urban Driving

2008-04-14
2008-01-1307
Exhaust emissions were measured under real world urban driving conditions using a set of in-vehicle FTIR emission measurement system, which is able to measure 65 emission components simultaneously at a rate of 0.5 Hz. The test vehicle was a modern EURO4 emission compliant SI car equipped with temperature measurement along the exhaust pipe across the catalyst so as to match thermal characteristics to emission profiles. A free flow urban driving cycle was used for the test and four repeated journeys were conducted. The results were compared to EU emissions legislation. The results show that the warm up of the lubricating oil needed 15 minutes. The TWC needed about 200 seconds to reach full conversion efficiency. CO, THC and NOx emissions exceeded the EURO4 exhaust emission legislation. CO2 emissions were well above the type approval value of this vehicle.
Technical Paper

Study of the Emissions Generated at Intersections for a SI Car under Real World Urban Driving Conditions

2006-04-03
2006-01-1080
A precision in-vehicle tail-pipe emission measurement system was installed in a EURO1 emissions compliant SI car and used to investigate the variability in tail-pipe emission generation at an urban traffic junction. Exhaust gas and skin temperatures were also measured along the exhaust pipe of the instrumented vehicle, so the thermal characteristics and the efficiency of the catalyst monitored could be included in the analysis. Different turning movements (driving patterns) at the priority T-junction were investigated such as straight, left and right turns with and without stops. The test car was hot stable running conditions before each test, thereby negating cold start effects. To demonstrate the influence of the junction on tail-pipe emissions and fuel consumption, distance based factors were determined that compared the intersection drive-through measurements with steady speed (state) runs. Fuel consumption was increased at intersections by a factor of 1.3∼5.9.
Technical Paper

Study of thermal characteristics, fuel consumption and emissions during cold start using an on-board measuring method for SI car real world urban driving

2007-07-23
2007-01-2065
Exhaust emissions were measured under real world urban driving conditions using a set of in-vehicle FTIR emission measurement system, which is able to measure 65 emission components simultaneously at a rate of 0.5 Hz. The test vehicle was a EURO 2 emission compliant SI car equipped with real time fuel consumption measurement and temperature measurement along the exhaust pipe across the catalyst allowing the matching of thermal characteristics to emission profiles and monitor fuel consumption. The temperature profile indicated that the light-off of the catalyst took about 150∼200 seconds. The warm up of the lubricating oil and coolant water required a longer time than the catalyst did. The impact of ambient temperatures on lubricating oil and coolant water warm ups was greater than that on the light-off of the catalyst. The heat loss and energy balance were calculated during the whole cycle period. The influence of cold start on fuel consumption was investigated.
X