Refine Your Search



Search Results

Technical Paper

A Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion

In this paper a fast NOx model is presented which can be used for engine optimization, aftertreatment control or virtual mapping. A cylinder pressure trace is required as input data. High calculation speed is obtained by using table interpolation to calculate equilibrium temperatures and species concentrations. Test data from a single-cylinder engine and from a complete six-cylinder engine have been used for calibration and validation of the model. The model produces results of good agreement with emission measurements using approximately 50 combustion product zones and a calculation time of one second per engine cycle. Different compression ratios, EGR rates, injection timing, inlet pressures etc. were used in the validation tests.
Journal Article

An In-Cycle based NOx Reduction Strategy using Direct Injection of AdBlue

In the last couple of decades, countries have enacted new laws concerning environmental pollution caused by heavy-duty commercial and passenger vehicles. This is done mainly in an effort to reduce smog and health impacts caused by the different pollutions. One of the legislated pollutions, among a wide range of regulated pollutions, is nitrogen oxides (commonly abbreviated as NOx). The SCR (Selective Catalytic Reduction) was introduced in the automotive industry to reduce NOx emissions leaving the vehicle. The basic idea is to inject a urea solution (AdBlue™) in the exhaust gas before the gas enters the catalyst. The optimal working temperature for the catalyst is somewhere in the range of 300 to 400 °C. For the reactions to occur without a catalyst, the gas temperature has to be at least 800 °C. These temperatures only occur in the engine cylinder itself, during and after the combustion.
Technical Paper

Analysis of the Effect of Geometry Generated Turbulence on HCCI Combustion by Multi-Zone Modeling

This paper illustrates the applicability of a sequential fluid mechanics, multi-zone chemical kinetics model to analyze HCCI experimental data for two combustion chamber geometries with different levels of turbulence: a low turbulence disc geometry (flat top piston), and a high turbulence square geometry (piston with a square bowl). The model uses a fluid mechanics code to determine temperature histories in the engine as a function of crank angle. These temperature histories are then fed into a chemical kinetic solver, which determines combustion characteristics for a relatively small number of zones (40). The model makes the assumption that there is no direct linking between turbulence and combustion. The multi-zone model yields good results for both the disc and the square geometries. The model makes good predictions of pressure traces and heat release rates.
Technical Paper

Applicability of Ionization Current Sensing Technique with Plasma Jet Ignition Using Pre-Chamber Spark Plug in a Heavy Duty Natural Gas Engine

This article deals with study of ionization current sensing technique's signal characteristics while operating with pre-chamber spark plug to achieve plasma jet ignition in a 6 cylinder 9 liter turbo-charged natural gas engine under EGR and excess air dilution. Unlike the signal with conventional spark plug which can be divided into distinct chemical and thermal ionization peaks, the signal with pre-chamber spark plug shows a much larger first peak and a negligible second peak thereafter. Many studies in past have found the time of second peak coinciding with the time of maximum cylinder pressure and this correlation has been used as an input to combustion control systems but the absence of second peak makes application of this concept difficult with pre-chamber spark plug.
Technical Paper

Balancing Cylinder-to-Cylinder Variations in a Multi-Cylinder VCR-HCCI Engine

Combustion initiation in an HCCI engine is dependent of several parameters that are not easily controlled like the temperature and pressure history in the cylinder. So achieving the same ignition condition in all the cylinders in a multi-cylinder engine is difficult. Factors as gas exchange, compression ratio, cylinder cooling, fuel supply, and inlet air temperature can differ from cylinder-to-cylinder. These differences cause both combustion phasing and load variations between the cylinders, which in the end affect the engine performance. Operating range in terms of speed and load is also affected by the cylinder imbalance, since misfiring or too fast combustion in the worst cylinders limits the load. The cylinder-to-cylinder variations are investigated in a multi-cylinder Variable Compression Ratio (VCR) engine, and the effect it has on the engine performance.
Technical Paper

CFD Study of Heat Transfer Reduction Using Multiple Injectors in a DCEE Concept

Earlier studies on efficiency improvement in CI engines have suggested that heat transfer losses contribute largely to the total energy losses. Fuel impingement on the cylinder walls is typically associated with high heat transfer. This study proposes a two-injector concept to reduce heat losses and thereby improve efficiency. The two injectors are placed at the rim of the bowl to change the spray pattern. Computational simulations based on the Reynolds-Averaged Navier-Stokes approach have been performed for four different fuel injection timings in order to quantify the reduction in heat losses for the proposed concept. Two-injector concepts were compared to reference cases using only one centrally mounted injector. All simulations were performed in a double compression expansion engine (DCEE) concept using the Volvo D13 single-cylinder engine. In the DCEE, a large portion of the exhaust energy is re-used in the second expansion, thus increasing the thermodynamic efficiency.
Technical Paper

Closed-Loop Control of an HCCI Engine

This paper presents a strategy for closed-loop control of a multi cylinder turbo charged Homogeneous Charge Compression Ignition (HCCI) engine. A dual fuel port injection system allows control of combustion timing and load individually for each cylinder. The two fuels used are isooctane and n-heptane, which provides a wide range of autoignition properties. Cylinder pressure sensors provide feedback and information regarding combustion. The angle of 50% heat release is calculated in real time for each cycle and used for timing feedback. Inlet air preheating is used at low loads to maintain a high combustion efficiency.
Technical Paper

Combustion Chamber Geometry Effects on the Performance of an Ethanol Fueled HCCI Engine

Homogeneous Charge Compression Ignition (HCCI) combustion is limited in maximum load due to high peak pressures and excessive combustion rate. If the rate of combustion can be decreased the load range can be extended. From previous studies it has been shown that by using a deep square bowl in piston geometry the load range can be extended due to decreased heat release rates, pressure rise rates and longer combustion duration compared to a disc shaped combustion chamber. The explanation for the slower combustion was found in the turbulent flow field in the early stages of the intake stroke causing temperature stratifications throughout the charge. With larger temperature differences the combustion will be longer compared to a perfectly mixed charge with less temperature variations. The methods used for finding this explanation were high-speed cycle-resolved chemiluminescence imaging and fuel tracer planar laser induced fluorescence (PLIF), together with large eddy simulations (LES).
Technical Paper

Combustion Chambers for Natural Gas SI Engines Part 2: Combustion and Emissions

The objective of this paper is to investigate how the combustion chamber design will influence combustion parameters and emissions in a natural gas SI engine. Ten different geometries were tried on a converted Volvo TD102 engine. For the different combustion chambers emissions and the pressure in the cylinder have been measured. The pressure in the cylinder was then used in a one-zone heat-release model to get different combustion parameters. The engine was operated unthrottled at 1200 rpm with different values of air/fuel ratio and EGR. The air/fuel ratio was varied from stoichiometric to lean limit. EGR values from 0 to 30% at stoichiometric air/fuel ratio were used. The results show a remarkably large difference in the rate of combustion between the chambers. The cycle-to-cycle variations are fairly independent of combustion chamber design as long as there is some squish area and the air and the natural gas are well mixed.
Technical Paper

Combustion Chambers for Natural Gas SI Engines Part I: Fluid Flow and Combustion

The most economical way to convert truck and bus DI-diesel engines to natural gas operation is to replace the injector with a spark plug and modify the combustion chamber in the piston crown for spark ignition operation. The modification of the piston crown should give a geometry well suited for spark ignition operation with the original swirling inlet port. Ten different geometries were tried on a converted VOLVO TD102 engine and a remarkably large difference in the rate of combustion was noted between the chambers. To find an explanation for this difference a cycle resolved measurement of the in-cylinder mean velocity and turbulence was performed with Laser Doppler Velocimetry (LDV). The results show a high correlation between in cylinder turbulence and rate of heat release in the main part of combustion.
Journal Article

Combustion Stratification with Partially Premixed Combustion, PPC, using NVO and Split Injection in a LD - Diesel Engine

Partially Premixed Combustion (PPC) is used to meet the increasing demands of emission legislation and to improve fuel efficiency. PPC with gasoline fuels have the advantage of a longer premixed duration of fuel/air mixture which prevents soot formation at higher loads. The objective of this paper is to investigate the degree of stratification for low load (towards idle) engine conditions using different injection strategies and negative valve overlap (NVO). The question is, how homogenous or stratified is the partially premixed combustion (PPC) for a given setting of NVO and fuel injection strategy. In this work PRF 55 has been used as PPC fuel. The experimental engine is a light duty (LD) diesel engine that has been modified to single cylinder operation to provide optical access into the combustion chamber, equipped with a fully variable valve train system. Hot residual gases were trapped by using NVO to dilute the cylinder mixture.
Technical Paper

Comparison Between In-Cylinder PIV Measurements, CFD Simulations and Steady-Flow Impulse Torque Swirl Meter Measurements

In-cylinder flow measurements, conventional swirl measurements and CFD-simulations have been performed and then compared. The engine studied is a single cylinder version of a Scania D12 that represents a modern heavy-duty truck size engine. Bowditch type optical access and flat piston is used. The cylinder head was also measured in a steady-flow impulse torque swirl meter. From the two-dimensional flow-field, which was measured in the interval from -200° ATDC to 65° ATDC at two different positions from the cylinder head, calculations of the vorticity, turbulence and swirl were made. A maximum in swirl occurs at about 50° before TDC while the maximum vorticity and turbulence occurs somewhat later during the compression stroke. The swirl centre is also seen moving around and it does not coincide with the geometrical centre of the cylinder. The simulated flow-field shows similar behaviour as that seen in the measurements.
Technical Paper

Comparison of Fuel Effects on Low Temperature Reactions in PPC and HCCI Combustion

The current research focus on fuel effects on low temperature reactions (LTR) in Homogeneous Charge Compression Ignition (HCCI) and Partially Premixed Combustion (PPC). LTR result in a first stage of heat release with decreasing reaction rate at increasing temperature. This makes LTR important for the onset of the main combustion. However, auto-ignition is also affected by other parameters and all fuel does not exhibit LTR. Moreover, the LTR does not only depend on fuel type but also on engine conditions. This research aims to understand how fuel composition affects LTR in each type of combustion mode and to determine the relative importance of chemical and physical fuel properties for PPC. For HCCI the chemical properties are expected to dominate over physical properties, since vaporization and mixing are completed far before start of combustion.
Technical Paper

Compression Ratio Influence on Maximum Load of a Natural Gas Fueled HCCI Engine

This paper discusses the compression ratio influence on maximum load of a Natural Gas HCCI engine. A modified Volvo TD100 truck engine is controlled in a closed-loop fashion by enriching the Natural Gas mixture with Hydrogen. The first section of the paper illustrates and discusses the potential of using hydrogen enrichment of natural gas to control combustion timing. Cylinder pressure is used as the feedback and the 50 percent burn angle is the controlled parameter. Full-cycle simulation is compared to some of the experimental data and then used to enhance some of the experimental observations dealing with ignition timing, thermal boundary conditions, emissions and how they affect engine stability and performance. High load issues common to HCCI are discussed in light of the inherent performance and emissions tradeoff and the disappearance of feasible operating space at high engine loads.
Technical Paper

Cycle Resolved Wall Temperature Measurements Using Laser-Induced Phosphorescence in an HCCI Engine

Cycle resolved wall temperature measurements have been performed in a one cylinder port injected optical Scania D12 truck engine run in HCCI mode. Point measurements at various locations were made using Laser-Induced Phosphorescence (LIP). Single point measurements with thermographic phosphors utilize the temperature dependancy of the phosphorescence decay time. The phosphorescence peak at 538 nm from the thermographic phosphor La2O2S:Eu was used to determine temperature. A frequency tripled 10 Hz pulsed Nd:YAG laser delivering ultra violet (UV) radiation at 355 nm was used for excitation of the phosphor. Detection in the spectral region 535 - 545 nm was performed every cycle with a photo multiplier tube connected to a 3 GHz oscilloscope. Measurements were made at four points on the cylinder head surface and two points on the outlet and inlet valves respectively. For each location measurements were made at different loads and at different crank angle degrees (CAD).
Technical Paper

Cycle to Cycle Variations in S.I. Engines - The Effects of Fluid Flow and Gas Composition in the Vicinity of the Spark Plug on Early Combustion

Simultaneous measurements of early flame speed and local measurements of the major parameters controlling the process are presented. The early flame growth rate was captured with heat release analysis of the cylinder pressure. The local concentration of fuel or residual gas were measured with laser induced fluorescence (LIF) on isooctane/3-pentanone or water. Local velocity measurements were performed with laser doppler velocimetry (LDV). The results show a significant cycle to cycle correlation between early flame growth rate and several parameters. The experiments were arranged to suppress all but one important factor at a time. When the engine was run without fuel or residual gas fluctuations, the cycle to cycle variations of turbulence were able to explain 50 % of the flame growth rate fluctuations. With a significantly increased fluctuation of F/A, obtained with port fuelling, 65% of the growth rate fluctuation could be explained with local F/A measurements.
Technical Paper

Cycle-to-Cycle Control of a Dual-Fuel HCCI Engine

A known problem of the HCCI engine is its lack of direct control and its requirements of feedback control. Today there exists several different means to control an HCCI engine, such as dual fuels, variable valve actuation, inlet temperature and compression ratio. Independent of actuation method a sensor is needed. In this paper we perform closed-loop control based on two different sensors, pressure and ion current sensor. Results showing that they give similar control performance within their operating range are presented. Also a comparison of two methods of designing HCCI timing controller, manual tuning and model based design is presented. A PID controller is used as an example of a manually tuned controller. A Linear Quadratic Gaussian controller exemplifies model based controller design. The models used in the design were estimated using system identification methods. The system used in this paper performs control on cycle-to-cycle basis. This leads to fast and robust control.
Technical Paper

Cylinder to Cylinder and Cycle to Cycle Variations in a Six Cylinder Lean Burn Natural Gas Engine

The cylinder to cylinder and cycle to cycle variations were measured in a production type Volvo natural gas engine. Cylinder pressure was measured in all six cylinders. Emission measurements were performed individually after all cylinders, and commonly after the turbocharger. Measurements (ECE R49 13-mode) were performed with different spark gap and two different locations for fuel injection, one before the throttle and one before the turbocharger. Heat-release and lambda calculations show substantial cylinder to cylinder variations, due to lambda variations between the cylinders. The slow burn combustion chamber, with low turbulence, results in high cycle to cycle variations (> 100% COV imep) for some of the load cases.
Technical Paper

Demonstrating the Performance and Emission Characteristics of a Variable Compression Ratio, Alvar- Cycle Engine

This paper is a direct continuation of a previous study that addressed the performance and design of a variable compression engine, the Alvar-Cycle Engine [1]. The earlier study was presented at the SAE International Conference and Exposition in Detroit during February 23-26, 1998 as SAE paper 981027. In the present paper test results from a single cylinder prototype are reviewed and compared with a similar conventional engine. Efficiency and emissions are shown as function of speed, load, and compression ratio. The influence of residual gas on knock characteristics is shown. The potential for high power density through heavy supercharging is analyzed.
Journal Article

Double Compression Expansion Engine Concepts: A Path to High Efficiency

Internal combustion engine (ICE) fuel efficiency is a balance between good indicated efficiency and mechanical efficiency. High indicated efficiency is reached with a very diluted air/fuel-mixture and high load resulting in high peak cylinder pressure (PCP). On the other hand, high mechanical efficiency is obtained with very low peak cylinder pressure as the piston rings and bearings can be made with less friction. This paper presents studies of a combustion engine which consists of a two stage compression and expansion cycle. By splitting the engine into two different cycles, high-pressure (HP) and low-pressure (LP) cycles respectively, it is possible to reach high levels of both indicated and mechanical efficiency simultaneously. The HP cycle is designed similar to today's turbo-charged diesel engine but with an even higher boost pressure, resulting in high PCP. To cope with high PCP, the engine needs to be rigid.