Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A Novel Approach for High Frequency Interior Noise Prediction

2018-04-03
2018-01-0148
Since Statistical Energy Analysis (SEA) is based on lumped parameters, acoustic responses predicted by SEA are spatially discontinuous. However, in many practical applications, the ability to predict spatially continuous energy flow is useful for guiding the design of systems with improved acoustical characteristics. A new approach, utilizing integral equations derived from energy flow concepts, is developed to predict the continuous variation of acoustic field such as sound pressure level in the interior of acoustic domains using structural response predicted by SEA. The computer code developed based on energy flow boundary integral equations is initially validated by analyzing sound propagation in a duct.
Technical Paper

Advanced Modeling of Aircraft Interior Noise using the Hybrid FE-SEA method

2008-03-30
2008-36-0575
Noise transmission paths in an aircraft include, in many cases, both components with a few modes and others with a high modal density. The components with few modes display a long wavelength behavior and are usually modeled using the Finite Element Method (FEM). On the other hand, components with many modes show a short wavelength behavior and suit the application of the Statistical Energy Analysis (SEA). An example of this kind of transmission path is given by the vibration transmission from the fuselage to the floor panels through the floor beams. The fuselage and the floor panels possess a high modal density while the floor beams are considerably stiff and display a small number of modes. The prediction of the vibro-acoustic response of such systems is commonly called the “mid frequency problem” and, until recently, was difficult to be handled with traditional modeling approaches. A Hybrid method that rigorously couples SEA and FEM has been recently proposed.
Technical Paper

Combining Ray Tracing and SEA to Predict Speech Transmissibility

2014-06-30
2014-01-2043
Speech transmissibility is a critical factor in the design of public address systems for passenger cabins in trains, aircraft and coaches. Speech transmissibility is primarily affected by the direct field, early low order reflections, and late reflections (reverberation) of the source. The direct and low order reflections are affected by the relative location of speakers and seats as well as the acoustic properties of the reflecting walls. To properly capture these early reflections, measures of speech transmissibility typically require time domain information. However, another important factor for speech transmissibility is background noise due to broadband exterior sources such as a flow noise sources. The background noise is typically modeled with broadband steady state assumptions such as in statistical energy analysis (SEA). This works presents an efficient method for predicting speech transmissiblity by combining ray tracing with SEA.
Technical Paper

Demonstration of Hybrid FE-SEA Analysis of Structure-Borne Noise in the Mid Frequency Range

2005-05-16
2005-01-2331
A hybrid FE-SEA analysis method has been developed to predict the structural response of complex systems at mid and high frequencies. At these frequencies, the dynamic properties of some components might be very sensitive to small perturbations while other components might exhibit a very robust behavior. This mixed dynamic behavior precludes the use of fully statistical approaches like SEA [1] or fully deterministic approaches like FE. In the hybrid method, either an SEA or an FE model is applied to each component of the complex system, and both descriptions are rigorously coupled in a generic way. An overview of the method is presented along with numerical and experimental validation studies.
Technical Paper

Testing and Simulation of Anti-Flutter Foam and High Damping Foam in a Vehicle Roof Structure

2013-05-13
2013-01-1944
The excitation of structural modes of vehicle roofs due to structure-borne excitations from the road and powertrain can generate boom and noise issues inside the passenger cabin. The use of elastomeric foams between the roof bows and roof panel can provide significant damping to the roof and reduce the vibration. If computer-aided engineering (CAE) can be used to predict the effect of elastomeric foams accurately on vibration and noise, then it would be possible to optimize the properties and placement of foam materials on the roof to attenuate vibration. The properties of the different foam materials were characterized in laboratory tests and then applied to a flat test panel and a vehicle body-in-white. This paper presents the results of an investigation into the testing and CAE analysis of the vibration and radiated sound power of flat steel panels and the roof from the BIW of an SUV with anti-flutter foam and Terophon® high damping foam (HDF) materials.
Technical Paper

Use of a Hybrid FE-SEA Model of a Trimmed Vehicle to Improve the Design for Interior Noise

2009-05-19
2009-01-2199
The Hybrid FE-SEA method has been used to create a fast/efficient model to predict structure-borne noise propagation in a fully trimmed vehicle over the frequency range from 200 to 1000 Hz. The method was highlighted along with the modeling process and extensive validation results in previously published papers [1-3]. The use of the model to analyze structure-borne noise in the full vehicle, and to design and evaluate the impact of counter measures was described. In this study, the Hybrid FE-SEA method is used identify potential design changes to improve the acoustic performance. First, results from a noise path analysis are used to identify key contributors to interior noise. Next, potential design strategies for reducing the interior noise are introduced along with implications on the model. Finally, sample prediction results illustrating the impact of design changes on interior noise levels are shown along with experimental validation results.
X