Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

Analysis of the Flow in the Nozzle of a Vertical Multi-Hole Diesel Engine Injector

1998-02-23
980811
An enlarged transparent model of a six-hole vertical diesel injector has been manufactured in order to allow flow measurements inside the sac volume and the injection holes to be obtained using a combination of laser Doppler velocimetry (LDV) and the refractive index matching technique under steady state conditions. The measurement points were concentrated in the sac volume close to the entrance of the injection holes as well as inside them on a vertical plane passing through the axis of two injection holes for two different needle lifts. The velocity flow field was characterized in terms of the mean velocity and the turbulent intensity. The results revealed that, under certain conditions, cavitation may occur in the recirculation zone formed at the entrance to the hole since the pressure in this region can reach the value of the vapor pressure of the flowing liquid; this was found to strongly depend on the needle lift and eccentricity.
Technical Paper

Application of a FIE Computer Model to an In-Line Pump-Based Injection System for Diesel Engines

1997-02-24
970348
A computer model simulating the flow in fuel injection systems has been used in order to investigate the fuel injection processes in an in-line pump-based fuel injection system for direct-injection diesel engines. The model is one-dimensional and it is based on the mass and momentum conservation equations for the simulation of the fuel flow and on the equilibrium of forces for the simulation of the mechanical movements of the valves present in the system. The fuel injection system tested comprised an in-line pump whose characteristics were examined by using as input the measured line pressure signal and by modeling the pump operation itself as well as the fuel flow through single- and two-stage injectors. For the validation of the model, extensive comparison with experimental data has been performed for a wide range of pump operating conditions.
Technical Paper

Cavitation in Real-Size Multi-Hole Diesel Injector Nozzles

2000-03-06
2000-01-1249
A production six-hole conical sac-type nozzle incorporating a quartz window in one of the injection holes has been used in order to visualize the flow under cavitating flow conditions. Simultaneous variation of both the injection and the back chamber pressures allowed images to be obtained at various cavitation and Reynolds numbers for two different fixed needle lifts corresponding to the first- and the second-stage lift of two-stage injectors. The flow visualization system was based on a fast and high resolution CCD camera equipped with high magnification lenses which allowed details of the various flow regimes formed inside the injection hole to be identified. From the obtained images both hole cavitation initiated at the top inlet corner of the hole as well as string cavitation formed inside the sac volume and entering into the hole from the bottom corner, were identified to occur at different cavitation and Reynolds numbers.
Technical Paper

Computer Simulation of Fuel Injection Systems for DI Diesel Engines

1992-10-01
922223
The continuity and momentum equations for a pump-pipe-nozzle fuel injection system have been solved by a computer simulation program employing both the Runge-Kutta method and the more widely used method of characteristics. This allows the prediction of fluid phenomena and the dynamics of the mechanical components based on the geometry of the FIE system. The simulation includes the effects of possible cavitation, system leakage as well as variations in fuel density and bulk modulus. The computer model has been made as flexible as possible by using a modular format and inputting the system parameters from external files or dialog boxes. Experimentation was done on a Bosch VE type distributor pump supplying a multi-hole type nozzle which allowed preliminary evaluation of the model by comparing the predicted and measured injection rates and line pressures over a range of pump speeds and loads.
Technical Paper

Coolant Flow in the Cylinder Head/Block of the Ford 2.5L DI Diesel Engine

1991-02-01
910300
Local measurements of the mean and rms velocities have been obtained by laser Doppler velocimetry in the coolant passages of a transparent model of a Ford 2.5L diesel cylinder head and block at a steady flowrate of 6.83 × 10-4 M3/s. The simulation of the coolant fluid by a mixture of hydrocarbon fluids at a predetermined constant temperature allowed accurate matching of the refractive index to that of the acrylic model, thus providing optical access for LDV measurements of the internal flow in sensitive areas where cooling is essential to prevent metal-fatigue failure. The results were obtained in sufficient detail to allow further validation of CFD coolant flow models.
Technical Paper

Effect of Multi-Injection Strategy on Cavitation Development in Diesel Injector Nozzle Holes

2005-04-11
2005-01-1237
The effect of multiple-injection strategy on nozzle hole cavitation has been investigated both experimentally and numerically. A common-rail Diesel injection system, used by Toyota in passenger car engines, has been employed together with a double-shutter CCD camera in order to visualise cavitation inside a submerged and optically accessible (in one out of the six holes) real-size VCO nozzle. Initially the cavitation development was investigated in single injection events followed by flow images obtained during multiple injections consisting of a pilot and a main injection pulse. In order to identify the effect of pilot injection on cavitation development during the main injection, the dwell time between the injection events was varied between 1.5-5ms for different pilot injection quantities. The extensive test matrix included injection pressures of 400 and 800bar and back pressures ranging from 2.4 up to 41bar.
Technical Paper

Evaluation of Pump Design Parameters in Diesel Fuel Injection Systems

1995-02-01
950078
A computer model solving the 1-D flow in a typical fuel injection system for direct-injection diesel engines is presented. A Bosch distributor - type VE pump connected to four Stanadyne pencil - type nozzles has been used to validate the computer model over a wide range of operating conditions. Validation of the developed computer code has been performed for eight representative test cases. The predicted values which were compared with the experimental ones include the pumping chamber pressure, the line pressure, the needle lift and the injection rate. Results using as input the measured pumping chamber pressure are also presented in order to identify the error in the injection rate signal attributed to the difference between the simulated and the experimental pumping chamber pressure. In addition, the total fuel injection quantity for pump speeds between 500 and 2000 rpm and lever positions between 20% to 100% was calculated and compared with measurements.
Technical Paper

Evaluation of the Predictive Capability of Diesel Nozzle Cavitation Models

2007-04-16
2007-01-0245
The predictive capability of Lagrangian and Eulerian multi-dimensional computational fluid dynamics models accounting for the onset and development of cavitation inside Diesel nozzle holes is assessed against experimental data. These include cavitation images available from a real-size six-hole mini-sac nozzle incorporating a transparent window as well as high-speed/CCD images and LDV measurements of the liquid velocity inside an identical large-scale fully transparent nozzle replica. Results are available for different cavitation numbers, which correspond to different cavitation regimes forming inside the injection hole. Discharge coefficient measurements for various real-size nozzles operating under realistic injection pressures are also compared and match well with models' predictions.
Technical Paper

Flow and Combustion in a Hydra Direct-Injection Diesel Engine

1991-02-01
910177
Measurements of flow, spray, combustion and performance characteristics are reported for a Hydra direct-injection diesel, based on the Ford 2.5 L, engine and equipped with a variable-swirl port, a unit fuel injector and optical access through the liner and piston. The results provide links between the pre-combustion and combustion flow and, at the same time, between purpose-built single-cylinder optical engines and multi-cylinder production engines of nearly identical combustion chamber geometry. In particular, the spray penetration was found to depend on engine speed, rather than load, with velocities up to around 260 m/s at atmospheric pressure and temperature which are reduced by a factor of 2.5 under operating conditions and seem to be unaffected by swirl. The duration of combustion was reduced with increasing swirl and ignition delay increased linearly with engine speed.
Technical Paper

Flow and Heat Transfer Characteristics of Impinging Transient Diesel Sprays

1994-03-01
940678
The spatial and temporal characteristics of transient diesel sprays impinging on unheated and heated walls were investigated by phase-Doppler anemometry (PDA) and the heat-transfer distribution in the vicinity of the impingement region was determined by fast response thermocouples. The results have provided quantitative evidence about the effect that the presence of the flat wall exerts on the spray characteristics. For example, independent of the thickness of the liquid film, the wall rearranges the droplet size distribution of the free spray with droplet collision and coalescence playing an important role in both the droplet redistribution and in the development of the wall-jet. Droplet sizes were reduced and mean tangential velocities increased with wall temperature at the upstream side and at the front of the wall-jet, respectively.
Technical Paper

Modeling of Advanced High-Pressure Fuel Injection Systems for Passenger Car Diesel Engines

1999-03-01
1999-01-0910
A one-dimensional, transient and compressible flow model was used in order to simulate the flow and pressure distribution in advanced high-pressure fuel injection systems; these include electronic distributor-type pumps with either axial or radial plungers and a common-rail system. Experimental data for the line pressure, needle lift, injection rate and total fuel injection quantity obtained over a wide range of operating conditions (from idle to high speed/full load) were used to validate the model. The FIE system used for validation comprised an electronic high-pressure pump connected to two-stage injectors of different type including 6-hole vertical and 5-hole inclined conical-sac and VCO nozzles.
Technical Paper

Modeling of Pressure-Swirl Atomizers for GDI Engines

1999-03-01
1999-01-0500
A new simulation approach to the modeling of the whole fuel injection process within a common-rail fuel injection system for direct-injection gasoline engines, including the pressure-swirl atomizer and the conical hollow-cone spray formed at the nozzle exit, is presented. The flow development in the common-rail fuel injection system is simulated using an 1-D model which accounts for the wave dynamics within the system and predicts the actual injection pressure and injection rate throughout the nozzle. The details of the flow inside its various flow passages and the discharge hole of the pressure-swirl atomizer are investigated using a two-phase CFD model which calculates the location of the liquid-gas interface using the VOF method and estimates the transient formation of the liquid film developing on the walls of the discharge hole due to the centrifugal forces acting on the swirling fluid.
Technical Paper

Nozzle Hole Film Formation and its Link to Spray Characteristics in Swirl-Pressure Atomizers for Direct Injection Gasoline Engines

2002-03-04
2002-01-1136
The numerical methodology used to predict the flow inside pressure-swirl atomizers used with gasoline direct injection engines and the subsequent spray development is presented. Validation of the two-phase CFD models used takes place against film thickness measurements obtained from high resolution CCD-based images taken inside the discharge hole of a pressure swirl atomizer modified to incorporate a transparent hole extension. The transient evolution of the film thickness and its mean axial and swirl velocity components as it emerges from the nozzle hole is then used as input to a spray CFD model predicting the development of both non-evaporating and evaporating sprays under a variety of back pressure and temperature conditions. Model predictions are compared with phase Doppler anemometry measurements of the temporal and spatial variation of the droplet size and velocity as well as CCD spray images.
Technical Paper

Prediction of Liquid and Vapor Penetration of High Pressure Diesel Sprays

2006-04-03
2006-01-0242
A dense-particle Eulerian-Lagrangian stochastic methodology, able to resolve the dense spray formed at the nozzle exit has been applied to the simulation of evaporating diesel sprays. Local grid refinement at the area where the spray evolves allows use of cells having sizes from 0.6 down to 0.075mm. Mass, momentum and energy source terms between the two phases are spatially distributed to cells found within a distance from the droplet centre; this has allowed for grid-independent interaction between the Eulerian and the Lagrangian phases to be reached. Additionally, various models simulating the physical processes taking place during the development of sprays are considered. The cavitating nozzle flow is used to estimate the injection velocity of the liquid while its effect on the spray formation is considered through an atomisation model predicting the initial droplet size.
Technical Paper

Pressure-Swirl Atomizers for DISI Engines: Further Modeling and Experiments

2000-03-06
2000-01-1044
A combined two-phase CFD nozzle model and 1-D fuel injection system model is used to predict the flow development inside the discharge hole of a pressure-swirl atomizer connected to a common-rail based fuel injection system for DISI engines. The fuel injection model accounts for the transient pressure pulses developing inside the common-rail and the injector upstream of the nozzle tip and predicts the fuel injection rate through the nozzle. This is then used as input to a 3-D single-phase CFD model estimating the transient development of the swirl velocity inside the pressure-swirl atomizer, as a function of the geometric characteristics of nozzle.
Technical Paper

Transient Characteristics of Multi-Hole Diesel Sprays

1990-02-01
900480
The spatial and temporal characteristics of a diesel spray injected into the atmosphere through a multi-hole nozzle used in small DI Diesel engines have been investigated by laser techniques as a function of pump speed and load. The results showed that spray tip penetration and velocity depend on injection frequency rather than injected volume and the spray is asymmetric during the early and main part of the injection period. In the time/space domain different structures have been identified within the injection period, with the early injection period characterized by a well atomized cloud of droplets, the main period by the spray head and a dense core and the late injection period by the disintegrating dense core and the spray tail. IN DIRECT-INJECTION DIESEL ENGINES for passenger cars, fuel is injected through multi-hole nozzles at high pressure to promote mixing with the rapidly swirling air inside the combustion chamber.
X