Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Actuator Fault Detection and Diagnosis of 4WID/4WIS Electric Vehicles

A fault detection and diagnosis (FDD) algorithm of 4WID/4WIS Electric Vehicles has been proposed in this study aiming to find the actuator faults. The 4WID/4WIS EV is one of the promising architectures for electric vehicle designs which is driven independently by four in-wheel motors and steered independently by four steering motors. The 4WID/4WIS EVs have many potential abilities in advanced vehicle control technologies, but diagnosis and accommodation of the actuator faults becomes a significant issue. The proposed FDD approach is an important part of the active fault tolerant control (AFTC) algorithm. The main objective of the FDD approach is to monitor vehicle states, find the faulty driving motor and then feedback fault information to the controller which would adopt appropriate control laws to accommodate the post-fault vehicle control system.
Journal Article

Based on the Unscented Kalman Filter to Estimate the State of Four-Wheel-Independent Electric Vehicle with X-by-Wire

As a new form of electric vehicle, Four-wheel-independent electric vehicle with X-By-Wire (XBW) inherits all the advantages of in-wheel motor drive electric vehicles. The vehicle steering system is liberated from traditional mechanical steering mechanism and forms an advanced vehicle with all- wheel independent driving, braking and steering. Compared with conventional vehicles, it has more controllable degrees of freedom. The design of the integrated vehicle dynamics control systems helps to achieve the steering, driving and braking coordinated control and improves the vehicle's handling stability. In order to solve the problem of lacking of vehicle state information in the integrated control, some methods are used to estimate the vehicle state of four-wheel-independent electric vehicles with XBW. In order to improve the estimation accuracy, unscented Kalman filter (UKF) is used to estimate the vehicle state variables in this paper.
Technical Paper

Design, Development and Application of Test Bench for Electrically Controlled Steering Systems

This essay aims to develop an electrically controlled steering test bench and lay a solid foundation for the development of steering system. The first part mainly introduces the function, structure and working principle of the test bench. For the hardware system, it includes the steering system, fixture, sensors as well as a frameless disk motor for carrying out automatic motor input, and a dual linear motor system selected as the road resistance simulation actuator. As for the software, MATLAB/Simulink, CarSim, RTI and ControlDesk are used. Therefore, with the help of real-time simulation platform, researchers can not only build control strategy and dynamic model but also control the experiment and tune parameters in real-time. The second part of the essay aims to identify both electric and mechanical parameters of R-EPS system by carrying out tests on the proposed test bench. As parameters are successfully identified, the feasibility of the test bench is also verified.
Technical Paper

Development and Verification of Electronic Braking System ECU Software for Commercial Vehicle

Electronic braking system (EBS) of commercial vehicle is developed from ABS to enhance the brake performance. Based on the early development of controller hardware, this paper starts with an analysis of the definition of EBS. It aims at the software design of electronic control unit, and makes it compiled into the controller in the form of C language by the in-depth study about control strategy of EBS in different braking conditions. Designed controller software is divided into two layers. The upper control strategy includes the recognition algorithm of driver's braking intention, estimation algorithm of the vehicle state, conventional braking strategy which consists of the algorithm of deceleration control and braking force distribution, and emergency braking strategy which consists of the algorithm of brake assist control and ABS control.
Technical Paper

Development of Active Control Strategy for Flat Tire Vehicles

This paper first presents an algorithm to detect tire blowout based on wheel speed sensor signals, which either reduces the cost for a TPMS or provides a backup in case it fails, and a tire blowout model considering different tire pressure is also built based on the UniTire model. The vehicle dynamic model uses commercial software CarSim. After detecting tire blowout, the active braking control, based on a 2DOF reference model, determines an optimal correcting yaw moment and the braking forces that slow down and stop the vehicle, based on a linear quadratic regulator. Then the braking force commands are further translated into target pressure command for each wheel cylinder to ensure the target braking forces are generated. Some simulations are conducted to verify the active control strategy.
Technical Paper

Numerical Achieved Extended Kalman Filter State Observer Design Based on a Vehicle Model Containing UniTire Model

It is difficult to obtain state variables accurately or economically while vehicle is moving, however these state variables are significant for chassis control. Although many researches have been done, a complex model always leads to a control system with poor real-time performance, while simple model cannot show the real characteristics. So, in order to estimate the value of yaw rate and side slip angle accurately and sententiously, an Extended Kalman Filter (EKF) observer is proposed, which is based on an ameliorated 2-DOF “bicycle model”. The EKF algorithm is achieved numerically and verified by the results from the real field test.
Technical Paper

Passive Fault-Tolerant Performance of 4WID/4WIS Electric Vehicles Based on MPC and Control Allocation

The passive fault-tolerant performance of the integrated vehicle controller (IVC) applied on 4WID/4WIS Electric Vehicles has been investigated in this study. The 4WID/4WIS EV is driven independently by four in-wheel motors and steered independently by four steering motors. Thanks to increased control flexibility of the over-actuated architecture, Control Allocation (CA) can be applied to control the 4WID/4WIS EVs so as to improve the handling and stability. Another benefit of the over-actuated architecture is that the 4WID/4WIS Electric Vehicle has sufficient redundant actuators to fight against the safety critical situation when one or more actuators fail.
Technical Paper

Study on Automated Mechanical Transmission and Method of Parameter Optimization Design for Hybrid Electric Bus

The hybrid electric city bus, which consists of the electric motor and battery, is obviously different from the traditional buses. This paper focuses on optimizing the characteristics of the automatic mechanical transmission in hybrid electric city bus and does the following studies: firstly, in order to reduce the fuel consumption, the transmission ratio and some structural parameters are optimized with CRUISE software; secondly, the volume and weight of the transmission structure is reduced and optimized by numerical optimization approach, with the limitation of the structural reliability.
Technical Paper

Study on Dynamic Characteristics and Control Methods for Drive-by-Wire Electric Vehicle

A full drive-by-wire electric vehicle, named Urban Future Electric Vehicle (UFEV) is developed, where the four wheels' traction and braking torques, four wheels' steering angles, and four active suspensions (in the future) are controlled independently. It is an ideal platform to realize the optimal vehicle dynamics, the marginal-stability and the energy-efficient control, it is also a platform for studying the advanced chassis control methods and their applications. A centralized control system of hierarchical structure for UFEV is proposed, which consist of Sensor Layer, Identification and Estimation Layer, Objective Control Layer, Forces and Motion Distribution Layer, Executive Layer. In the Identification and Estimation Layer, identification model is established by utilizing neural network algorithms to identify the driver characteristics. Vehicle state estimation and road identification of UFEV based on EKF and Fuzzy Logic Control methods is also conducted in this layer.
Technical Paper

Variable Yaw Rate Gain for Vehicle Steer-by-wire with Joystick

Steering-By-Wire (SBW) system has advantages of advanced vehicle control system, which has no mechanical linkage to control the steering wheel and front wheels. It is possible to control the steering wheel actuator and front wheels actuator steering independently. The goal of this paper is to use a joystick to substitute the conventional steering wheel with typical vehicle SBW system and to study a variable steering ratio design method. A 2-DOF vehicle dynamic reference model is built and focused on the vehicle steering performance of drivers control joystick. By verifying the results with a hardware-in-the-loop simulation test bench, it shows this proposed strategy can improve vehicle maneuverability and comfort.