Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Abdominal Injuries in Frontal Crashes: Influence of Occupant Age and Seating Position

2018-04-03
2018-01-0535
Objective: This study investigated the incidence of abdominal injuries in frontal crashes by occupant age and seating position. It determined the risk for abdominal injury (AIS 2+) by organ and injury source. Methods: 1997-2015 NASS-CDS was analyzed to estimate the occurrence of abdominal injuries in non-ejected, belted occupants involved in frontal crashes. Vehicles were included with 1997+ model year (MY). The annual incidence and rate for different types of abdominal injury were estimated with standard errors. The sources for abdominal injury were determined. Results: 77.8% of occupants were drivers, 16.7% were right-front passengers and 5.4% were rear passengers. Rear passengers accounted for 77.1% of 8-11 year old (yo) and 17.2% of 12-17 yo group. The risk for moderate abdominal injury (MAIS 2 + abdo) was 0.30% ± 0.053% in drivers, 0.32% ± 0.086% in right-front passengers and 0.38% ± 0.063% in rear occupants.
Technical Paper

Analysis of Rear Seat Sled Tests with the 5th Female Hybrid III: Incorrect Conclusions in Bidez et al. SAE 2005-01-1708

2019-04-02
2019-01-0618
Objective: Sled test video and data were independently analyzed to assess the validity of statements and conclusions reported in Bidez et al. SAE paper 2005-01-1708 [7]. Method: An independent review and analysis of the test data and video was conducted for 9 sled tests at 35 km/h (21.5 mph). The 5th female Hybrid III was lap-shoulder belted in the 2nd or 3rd row seat of a SUV buck. For one series, the angle was varied from 0, 15, 30, 45 and 60 deg PDOF. The second series involved shoulder belt pretensioning and other belt modifications. Results: Bidez et al. [7] claimed “The lap belts moved up and over the pelvis of the small female dummy for all impact angles tested.” We found that there was no submarining in any of the tests with the production lap-shoulder belts. Bidez et al. [7] claimed “H3-5F dummies began to roll out of their shoulder belt at… 30 degrees. Complete loss of torso support was seen at 45 degrees without significant kinetic energy dissipation.”
Technical Paper

Characterization of Thoracic Spinal Development by Age and Sex with a Focus on Occupant Safety

2020-04-14
2020-01-0520
Spine degeneration can lower injury tolerance and influence injury outcomes in vehicle crashes. To date, limited information exists on the effect of age and sex on thoracic spine 3-dimensional geometry. The purpose of this study is to quantify thoracic spinal column and canal geometry using selected geometrical measurement from a large sample of CT scans. More than 33,488 scans were obtained from the International Center for Automotive Medicine database at the University of Michigan under Institutional Review Board approval (HUM00041441). The sample consisted of CT scans obtained from 31,537 adult and 1,951 pediatric patients between the ages of 0 to 99 years old. Each scan was processed semi-automatically using custom algorithms written in MATLAB (The Math Works, Natick, MA). Five geometrical measurements were collected including: 1) maximum spinal curvature depth (D), 2) T1-to-T12 vertical height (H), 3) Kyphosis Index (KI), 4) kyphosis angle, and 5) spinal canal radius.
Technical Paper

Dual-Recliner ABTS Seats in Severe Rear Sled Testswith the 5th, 50th and 95th Hybrid III

2021-04-06
2021-01-0917
Seat strength has increased over the past four decades which includes a transition to dual recliners. There are seat collision performance issues with stiff ABTS and very strong seats in rear impacts with different occupant sizes, seating positions and physical conditions. In this study, eight rear sled tests were conducted in four series: 1) ABTS in a 56 km/h (35 mph) test with a 50th Hybrid III ATD at MGA, 2) dual-recliner ABTS and F-150 in a 56 km/h (35 mph) test with a 5th female Hybrid III ATD at Ford, 3) dual-recliner ABTS in a 48 km/h (30 mph) test with a 95th Hybrid III ATD leaning inboard at CAPE and 4) dual-recliner ABTS and Escape in 40 km/h (25 mph) in-position and out-of-position tests with a 50th Hybrid III ATD at Ford. The sled tests showed that single-recliner ABTS seats twist in severe rear impacts with the pivot side deformed more rearward than the stanchion side.
Technical Paper

Evaluation of Drivers of Very Large Pickup Trucks: Size, Seated Height and Biomechanical Responses in Drop Tests

2023-04-11
2023-01-0649
This study focused on occupant responses in very large pickup trucks in rollovers and was conducted in three phases. Phase 1 - Field data analysis: In a prior study [9], 1998 to 2020 FARS data were analyzed; Pickup truck drivers with fatality were 7.4 kg heavier and 4.6 cm taller than passenger car drivers. Most pickup truck drivers were males. Phase 1 extended the study by focusing on the drivers of very large pickup trucks. The size of 1999-2016 Ford F-250 and F-350 drivers involved in fatal crashes was analyzed by age and sex. More than 90% of drivers were males. The average male driver was 179.5 ± 7.5 cm tall and weighed 89.6 ± 18.4 kg. Phase 2 – Surrogate study: Twenty-nine male surrogates were selected to represent the average size of male drivers of F-250 and F-350s involved in fatal crashes. On average, the volunteers weighed 88.6 ± 5.2 kg and were 180.0 ± 3.2 cm tall with a 95.2 ± 2.2 cm seated height.
Technical Paper

Fatalities of Second-Row Children in Front, Side and Rear Impacts by Calendar Year (CY) and Model Year (MY)

2022-03-29
2022-01-0860
Field data was analyzed on second-row children in front, side and rear impacts to study fatality trends by model year (MY) and calendar year (CY) with 1980-2020 MY vehicles. The different MY and CY perspectives show changes in rates that are useful for setting priorities for second-row child safety in rear impacts. 1990 to 2019 FARS was queried to assess the number of fatally injured and non-ejected second-row children (0-15 years old) in crashes without fires. The children included outboard occupants seated behind an occupied front seat and center occupants. The data was analyzed for rear, front and side impacts to assess crash frequency. 1990-2015 POLK was queried to assess exposure of registered vehicles and estimate a fatality rate. The FARS and POLK data were sub-grouped by MY of the vehicle and CY of the crash. There were 2.8-times more fatally injured children in frontal crashes than in the rear crashes. The ratio of frontal and rear crashes varied with CY sub-groups.
Technical Paper

Field Data Analysis of Rear Occupant Injuries Part I: Adults and Teenagers

2003-03-03
2003-01-0153
Since more occupants are using rear seats of vehicles, a better understanding of priorities for rear occupant protection is needed as future safety initiatives are considered. A two-part study was conducted on occupant injuries in rear seating positions. In Part I, adult and teenage occupants ≥13 years of age are investigated. In Part II, children aged 4-12 years old and toddlers and infants aged 0-3 are studied separately because of the use of infant and child seats and boosters involve different injury mechanisms and tolerances. The objectives of this study on adult and teenager, rear-seated occupants (≥13 years old) are to: 1) review accident data, 2) identify the distribution of rear occupants, and 3) analyze injury risks in various crash modes, including rollovers, frontal, side and rear impacts. Three databases were investigated: NASS-CDS, GES and FARS.
Technical Paper

Field Data Analysis of Rear Occupant Injuries Part II: Children, Toddlers and Infants

2003-03-03
2003-01-0154
Child safety continues to be an important issue in automotive safety for many reasons, including reported cases of serious injury from airbag deployments. As a result of extensive public education campaigns, most children are now placed in rear seats of vehicles. Accordingly, a more precise understanding of rear-seat occupant protection is developing as the second and third rows have become the primary seating area for children in SUVs, vans and passenger cars. The objective of this study was to review field crash and injury data from rear seats, identify the distribution of children and infants in rear seats, and analyze injury risks in various crash modes. The database used was the 1991-1999 NASS-CDS. When looking at crash configurations for 1st and 2nd row children, rollover crashes involved the highest incidence of MAIS 3+ injury, followed by frontal and side impacts. Lap-shoulder belt usage was similar for 1st and 2nd row children.
Technical Paper

Influence of DISH, Ankylosis, Spondylosis and Osteophytes on Serious-to-Fatal Spinal Fractures and Cord Injury in Rear Impacts

2019-04-02
2019-01-1028
Seats have become stronger over the past two decades and remain more upright in rear impacts. While head restraints are higher and more forward providing support for the head and neck, serious-to-fatal injuries to the thoracic and cervical spine have been seen in occupants with spinal disorders, such as DISH (diffuse idiopathic skeletal hyperostosis), ankylosis, spondylosis and/or osteophytes that ossify the joints in the spine. This case study addresses the influence of spinal disorders on fracture-dislocation and spinal cord injury in rear impacts with relatively upright seats. Nineteen field accidents were investigated where serious-to-fatal injuries of the thoracic and cervical spine occurred with the seat remaining upright or slightly reclined. The occupants were lap-shoulder belted, some with belt pretensioning and cinching latch plate.
Book

Occupant and Vehicle Responses in Rollovers

2004-03-08
During the past decade, there has been a steady increase in studies addressing rollover crashes and injuries. Though rollovers are not the most frequent crash type, they are significant with respect to serious injury and interest in rollovers has grown with the introduction of SUVs, vans, and light trucks. A review of Occupant and Vehicle Responses in Rollovers examines relevant conditions for field roll overs, vehicle responses, and occupant kinetics in the vehicle. This book edited by Dr. David C. Viano and Dr. Chantal S. Parenteau includes 62 technical documents covering 15 years of rollover crash safety, including field crash statistics, pre- and rollover dynamics, test procedures and dummy responses.
Technical Paper

Quantification of Sternum Morphomics and Injury Data

2019-04-02
2019-01-1217
Crash safety researchers have an increased concern regarding the decreased thoracic deflection and the contributing injury causation factors among the elderly population. Sternum fractures are categorized as moderate severity injuries, but can have long term effects depending on the fragility and frailty of the occupant. Current research has provided detail on rib morphology, but very little information on sternum morphology, sternum fracture locations, and mechanisms of injury. The objective of this study is two-fold (1) quantify sternum morphology and (2) document sternum fracture locations using computed tomography (CT) scans and crash data. Thoracic CT scans from the University of Michigan Hospital database were used to measure thoracic depth, manubriosternal joint, sternum thickness and bone density. The sternum fracture locations and descriptions were extracted from 63 International Center for Automotive Medicine (ICAM) crash cases, of which 22 cases had corresponding CT scans.
Technical Paper

The Effect of Crash Severity and Structural Intrusion on ATD Responses in Rear-End Crashes

2020-04-14
2020-01-1224
This study assesses vehicle and occupant responses in six vehicle-to-vehicle high-speed rear impact crash tests conducted at the Exponent Test and Engineering Center. The struck vehicle delta Vs ranged from 32 to 76 km/h and the vehicle centerline offsets varied from 5.7 to 114 cm. Five of the six tests were conducted with Hybrid III ATDs (Anthropometric Test Device) with two tests using the 50th male belted in the driver seat, one test with an unbelted 50th male in the driver seat, one test with a 95th male belted in the driver seat, and one with the 5th female lap belted in the left rear seat. All tests included vehicle instrumentation and three tests included ATD instrumentation. The ATD responses were analyzed and compared to corresponding IARVs (injury assessment reference values). Ground-based and onboard vehicle videos were synchronized with the vehicle kinematic data and biomechanical responses.
Technical Paper

Update on Second-Row Children Responses in Rear and Frontal Crashes with a Focus on the Potential Effect of Stiffening Front Seat Structures

2020-04-14
2020-01-1215
NHTSA has recently been petitioned to address the protection of second-row children in rear crashes due front seatback performance. The protection of children is important. However, it is more complex than assessing front seat performance in rear impacts. Viano, Parenteau (2008 [1]) analyzed cases of serious-to-fatally injured (MAIS 3+F) children up to 7 years old in the second row in rear impacts involving 1990+ model year vehicles using 1997-2005 NASS-CDS. They observed that intrusion was an important factor pushing the child forward into the back of the front seat, B-pillar or other front structure. To help assess whether stiffening the front seats would be beneficial for second-row child safety, the 2008 study was updated using more recent data and model year vehicles. In the present study, 1997-2015 NASS-CDS data were analyzed for serious-to-fatally (MAIS 3+F) injured 0- to 7-year old children in the second row with 1994+ model year vehicles.
X