Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Crush Energy in Accident Reconstruction

1986-02-24
860371
Vehicle accident reconstruction methods based on deformation energy are argued to be an increasingly valuable tool to the accident reconstructionist, provided reliable data, reasonable analysis techniques, and sound engineering judgement accompany their use. The evolution of the CRASH model of vehicle structural response and its corresponding stiffness coefficients are reviewed. It is concluded that the deformation energy for an accident vehicle can be estimated using the CRASH model provided that test data specific to the accident vehicle is utilized. Published stiffness coefficients for vehicle size categories are generally not appropriate. For the purpose of estimating vehicle deformation energy, a straight-forward methodology is presented which consists of applying the results of staged crash tests. The process of translating crush profiles to estimates of vehicle deformation energies and velocities is also discussed.
Technical Paper

Design, Development and Testing of a Load-Sensing Crash Dummy Face

1984-02-01
840397
This project covers one facet of a program to develop a mechanical model for characterizing the time history of local forces on the zygomatic, maxillary and mandible regions of the human face during a frontal collision. Two mechanical devices to measure the forces on crash dummies during testing were designed, constructed and tested. The devices employed cantilever beams equipped with strain gauges. Both devices were subjected to a series of drop tests onto various materials. Time histories were compared to those obtained from cadaver experiments. While the data obtained from this testing appears to be similar to the cadaver data, further improvements and modifications will make the model much more useful.
Technical Paper

Facial Impact Response — A Comparison of the Hybrid III Dummy and Human Cadaver

1988-10-01
881719
Results indicate the need for a redesigned Hybrid III face capable of accurate force and acceleration measurements. New instrumentation and methods for facial fracture detection were developed, including the application of acoustic emissions. Force/ deflection information for the human cadaver head and the Hybrid III ATD were generated for the frontal, zygomatic, and maxillary regions.
Technical Paper

Friction Applications in Accident Reconstruction

1983-02-01
830612
The determination of appropriate friction coefficient values is an important aspect of accident reconstruction. Tire-roadway friction values are highly dependent on a variety of physical factors. Factors such as tire design, side force limitations, road surface wetness, vehicle speed, and load shifting require understanding if useful reconstruction calculations are to be made. Tabulated experimental friction coefficient data are available, and may be improved upon in many situations by simple testing procedures. This paper presents a technical review of basic concepts and principles of friction as they apply to accident reconstruction and automobile safety. A brief review of test measurement methods is also presented, together with simple methods of friction measurement to obtain more precise values in many situations. This paper also recommends coefficient values for reconstruction applications other than tire- roadway forces.
Technical Paper

Improvements to the SMAC Program

1983-02-01
830610
The Simulation Model of Automobile Collisions (SMAC) computer program has seen more than a decade of use under NHTSA auspices. Although SMAC has proven itself to be a useful investigative tool, the program has several shortcomings which either have been addressed by the authors or need to be addressed by further work. This paper presents the results of our ongoing work to improve SMAC and our recommendations for further work. Those model features discussed herein which either have been or need to be revised consist of (1) the calculation of crush forces when penetration is deep (2) the representation of the vehicles' crush pressure vs deflection relationship and (3) the distribution of tire normal forces in reaction to pitch and roll. An input interfacing program called SMACED has been written and is discribed. This editing program greatly simplifies the use of SMAC and will be found particularly useful for the inexperienced or infrequent SMAC user.
Technical Paper

Injury and Intrusion in Side Impacts and Rollovers

1984-02-01
840403
The relationship between occupant crash injury and occupant compartment intrusion is seen in the perspectives of the velocity-time analysis and the NCSS statistical data for two important accident injury modes, lateral and rollover collisions. Restraint system use, interior impacts, and vehicle design features are considered. Side impact intrusion is analyzed from physical principles and further demonstrated by reference to staged collisions and NCSS data. Recent publications regarding findings of the NCSS data for rollovers, as well as the NCSS data itself, are reviewed as a background for kinematic findings regarding occupant injury in rollovers with roof crush.
Technical Paper

Interrelationship of Velocity and Chest Compression in Blunt Thoracic Impact to Swine

1981-10-01
811016
As part of a continuing study of thoracic injury resulting from blunt frontal loading, the interrelationship of velocity and chest compression was investigated in a series of animal experiments. Anesthetized male swine were suspended in their natural posture and subjected to midsternal, ventrodorsad impact. Twelve animals were struck at a velocity of 14.5 ± 0.9 m/s and experienced a controlled thoracic compression of either 15, 19, or 24%. Six others were impacted at 9.7 ± 1.3 m/s with a greater mean compression of 27%. For the 14.5 m/s exposures the severity of trauma increased with increasing compression, ranging from minor to fatal. Injuries included skeletal fractures, pulmonary contusions, and cardiovascular ruptures leading to tamponade and hemothorax. Serious cardiac arrhythmias also occurred, including one case of lethal ventricular fibrillation. The 9.7 m/s exposures produced mainly pulmonary contusion, ranging in severity from moderate to critical.
Technical Paper

Interrelationship of Velocity and Chest Compression in Blunt Thoracic Impact to Swine II

1986-10-27
861881
Results of two studies concerning the interrelationship of velocity, compression and injury in blunt thoracic impact to anesthetized swine have been combined to provide a data base of forty-one experiments. impact velocity ranged from ∼8-30 m/s and applied normalized chest compression from ∼0.10-0.30. Experimental subjects were suspended in the spine-horizontal position and loaded midsternally through a 150 mm diameter, flat rigid disk on an impacting mass propelled upward from below. Measurements and computations included sternal and spinal accelerations, intracardiovascular overpressures, physiological responses, injury, as assessed by necropsy, and different forms of the velocity and compression exposure severity parameters. The significance of both compression and velocity as parameters of impact exposure severity is clearly demonstrated. Qualitatively, exacerbation of injury was seen when either variable was increased with the other held constant.
Technical Paper

Occupant Protection in Rear-end Collisions: II. The Role of Seat Back Deformation in Injury Reduction

1991-10-01
912914
The National Highway Traffic Safety Administration (NHTSA) has recently opened a rulemaking docket seeking comments on the design of automobile seats and their performance in rear Impacts. There are two philosophies of seat design: one advocates rigid seats, the other advocates seats which yield in a controlled manner. A review of the legislative history of seat back design standards indicates that yielding seats have historically been considered a better approach for passenger cars. The design characteristics of current production automobile seats are evaluated and show no significant changes over the past three decades. Concerns about the performance of rigid seat backs in real world rear impacts are discussed, specifically increased injury exposure due to ramping, rebound and out-of-position occupants.
Technical Paper

Postural Influences on Thoracic Impact

1979-02-01
791028
The influence of body posture, and inherently support, on thoracic impact response was investigated in an animal model. Anesthetized and postmortem domestic swine were exposed to blunt, midsternal loading while supported in their natural quadrupedal posture, and the results were compared with previously reported data from similar tests involving an upright body orientation. Twelve male animals were tested, six while anesthetized and six postmortem. Each animal was impacted once by a 21 kg rigid mass with a flat contact interface moving at a nominal velocity of either 8 or 10 m/s. Measured mechanical responses included applied load, sternal and spinal accelerations, thoracic compression and aortic overpressure. Injury response was assessed from a thoracico-abdominal necropsy. In addition, ECG traces were recorded pre and postimpact to monitor electro-physiological response.
Technical Paper

Proportional Braking of Solid-Frame Vehicles

1971-02-01
710047
An engineering analysis of vehicle braking is presented in terms of the utilization of available road friction. Physical relations are derived which allow the determination of optimum brake force distribution on front and rear wheels as a function of axle loading. Ideal braking distribution curves are shown for a typical vehicle in the loaded and unloaded conditions. A technique is suggested for rational design of braking system parameters. It is applied to the case of a two-stage proportioning system, and is validated by experimental data from tests using a specially equipped light truck. It is concluded that a proper design analysis can establish a combination of braking system parameters which results in improved utilization of available friction. A simple, self-adjusting brake proportioning system can be a highly cost-effective safety device for truck use.
Technical Paper

The Assessment of the Societal Benefit of Side Impact Protection

1990-02-01
900379
This paper summarizes work relating to the assessment of societal benefits of side impact protection. National Crash Severity Study (NCSS) and National Accident Sampling System (NASS) accident data technigues were reviewed with respect to the reliability of output information concerning the distribution of side impact accidents by impact severity and relationships between injury and impact severity. NCSS and NASS are confounded by errors and inadequacies, primarily as a result of improper accident reconstruction based upon the CRASH computer program. Based on review of several sample cases, it is believed that the NCSS/NASS files underestimate Lower severities and overestimate higher severities in side impact, with delta-V errors probably overestimated by 25-30 percent in the case of the more serious accidents. These errors cannot be properly quantified except on a case-by-case basis. They introduce unknown biases into NCSS/NASS.
Technical Paper

The VTS Single-Vehicle Trajectory Simulation

1985-02-25
850252
A vehicle trajectory simulation called VTS has been developed as an aid for reconstruction of automobile accidents. The two dimensional vehicle has longitudinal, lateral and yaw degrees of freedom, a point mass at the center of gravity) yaw inertia about the center of gravity and four contact points (“tires”) which can be arbitrarily positioned. No collision or aerodynamic forces are modeled. The traction surface is represented as a flat plane with a specified nominal friction coefficient. Several quadrilateral “patches” may be applied to the surface to change the friction coefficient in specific regions. User vehicle control consists of timewise tables for steering angle and traction coefficient for each of the four wheels. When used individually or in conjunction with other computer modules, VTS provides a convenient, accurate modular tool for trajectory simulation.
Technical Paper

Thoracic Impact Response of Live Porcine Subjects

1976-02-01
760823
Five anesthetized porcine subjects were exposed to blunt thoracic impact using a 21 kg mass with a flat contact surface traveling at 3.0 to 12.2 m/s. The experiments were conducted to assess the appropriateness of studying in vivo mechanical and physiological response to thoracic impact in a porcine animal model. A comprehensive review of comparative anatomy between the pig and man indicates that the cardiovascular, respiratory and thoracic skeletal systems of the pig are anatomically and functionally a good parallel of similar structures in man. Thoracic anthropometry measurements document that the chest of a 50 to 60 kg pig is similar to the 50th percentile adult male human, but is narrower and deeper. Peak applied force and chest deflection are in good agreement between the animal's responses and similar impact severity data on fresh cadavers.
X