Refine Your Search

Search Results

Viewing 1 to 20 of 20
Technical Paper

An Experimental Investigation of Alcohol/Diesel Fuel Blends on Combustion and Emissions in a Single-Cylinder Compression Ignition Engine

2016-04-05
2016-01-0738
UV-visible digital imaging and 2D chemiluminescence were applied on a single cylinder optically accessible compression ignition engine to investigate the effect of different alcohol/diesel fuel blends on the combustion mechanism. The growing request for greenhouse gas emission reduction imposes to consider the use of alternative fuels with the aim of both partially replacing the diesel fuel and reducing the fossil fuel consumption. To this purpose, the use of ABE (Acetone-Butanol-Ethanol) fermentation could represent an effective solution. Even if the different properties of alcohols compared to Diesel fuel limit the maximum blend concentration, low blend volume fractions can be used for improving combustion efficiency and exhaust emissions. The main objective of this study was to investigate the effects of the different fuel properties on the combustion evolution within the combustion chamber of a prototype optically accessible compression ignition engine.
Journal Article

CFD Analysis of Combustion and Knock in an Optically Accessible GDI Engine

2016-04-05
2016-01-0601
The occurrence of knock is the most limiting hindrance for modern Spark-Ignition (SI) engines. In order to understand its origin and move the operating condition as close as possible to onset of this potentially harmful phenomenon, a joint experimental and numerical investigation is the most recommended approach. A preliminary experimental activity was carried out at IM-CNR on a 0.4 liter GDI unit, equipped with a flat transparent piston. The analysis of flame front morphology allowed to correlate high levels of flame front wrinkling and negative curvature to knock prone operating conditions, such as increased spark timings or high levels of exhaust back-pressure. In this study a detailed CFD analysis is carried out for the same engine and operating point as the experiments. The aim of this activity is to deeper investigate the reasons behind the main outcomes of the experimental campaign.
Technical Paper

Characterization of Alcohol Sprays from Multi-Hole Injector for DISI Engines through PIV Technique

2015-04-14
2015-01-0927
The use of alcohols as alternative to gasoline for fuelling spark-ignition (SI) engines is widespread. Growing interest is paid for n-butanol because of its characteristics that are similar to gasoline. If compared with other alcohols, n-butanol has higher energy content and miscibility with gasoline, lower hygroscope and corrosive properties making it an attractive solution for gasoline replacement. Even if several studies have been conduced to characterize the n-butanol combustion within Spark Ignition engines, few data are available on atomization and spray behavior. This paper reports the results of an experimental investigation to characterize the velocity vector field of two fuel-sprays injected by a 6-hole nozzle for Direct Injection Spark Ignition (DISI) engine. 2D Mie-scattering and Particle Image Velocimetry (PIV) measurements were carried out in an optically accessible vessel at ambient temperature and pressure.
Technical Paper

Characterization of Nanoparticles at the Exhaust of a Common Rail Diesel Engine by Optical Techniques and Conventional Method.

2005-05-11
2005-01-2155
Broadband ultraviolet-visible extinction and scattering spectroscopy (BUVESS) and Laser Induced Incandescence (LII) were used at the undiluted exhaust of a Common Rail diesel engine for detection, sizing and counting nanoparticles. BUVESS and LII are powerful in situ and non intrusive techniques. BUVESS is based on multiwavelength extinction and scattering spectroscopy. It overcomes the intrinsic limitations of single wavelength techniques because it takes advantage of data at several wavelengths to retrieve primary particle size distribution with better accuracy. LII measures volume concentration and mean size of primary particles with a large measurement range, not limited by aggregate size. The optical results were compared with those obtained by conventional methods like opacimeter for mass concentration and Electrical Low Pressure Impactor (ELPI) for sizing.
Technical Paper

Combustion Process Investigation in a Small SI Engine using Optical Diagnostics

2010-10-25
2010-01-2262
Nowadays an elevated number of two, three and four wheels vehicles circulating in the world-wide urban areas is equipped with Port Fuel Injection Spark Ignition (PFI SI) engines. Their technological level is high, but a further optimization is still possible, especially at low engine speed and high load. To this purpose, the scientific community is now focused on deepening the understanding of thermo fluid dynamic phenomena that takes place in this kind of engine: the final purpose is to find key points for the reduction in engine specific fuel consumption and exhaust emissions without a decrease in performance. In this work, the combustion process was investigated in an optically accessible single cylinder PFI SI engine. It was equipped with the head, injection device and exhaust line of a commercial small engine for two-wheel vehicles, it had the same geometrical characteristics in terms of bore, stroke and compression ratio.
Technical Paper

Effect of Control Parameters in an Optical DISI Engine with Gasoline-Butanol Fueling

2015-09-01
2015-01-1944
Effects of n-butanol on the combustion process in a direct injection spark ignition engine were investigated through flame visualization and spectroscopy. An optically accessible engine was equipped for the trials with a commercial cylinder head and wall guided injection system. Injection pressure (100 bar) and engine speed (2000 rpm) were fixed while injection timing and duration were changed to realise stoichiometric and lean fuelling in homogenous charge conditions. Specifically, UV-visible digital imaging was applied in order to study the flame front inception and propagation with particular interest in the early combustion stages. UV-visible natural emission spectroscopy was applied to investigate the formation and the evolution of the main chemical compounds characterizing the spark ignition and combustion processes. Detailed image processing allowed to correlate the morphology and the local flame front curvature with thermodynamic data.
Journal Article

Experimental Evaluation of an Advanced Ignition System for GDI Engines

2015-09-06
2015-24-2520
A plasma ignition system was tested in a GDI engine with the target of combustion efficiency improvement without modifying engine configuration. The plasma was generated by spark discharge and successively sustained to enhance its duration up to 4 ms. The innovative ignition system was tested in an optically accessible single-cylinder DISI engine to investigate the effects of plasma on kernel stability and flame front propagation under low loads and lean mixture (λ≅1.3). The engine was equipped with the head of a commercial turbocharged engine with similar geometrical specifications (bore, stroke, compression ratio). All experiments were performed at 2000 rpm and 100 bar injection pressure. UV-visible 2D chemiluminescence was applied in order to study the flame front inception and propagation with particular interest in the early combustion stages. A bandpass filter allowed selecting luminous signal due to OH radicals.
Technical Paper

Experimental Study on the Spray Atomization of a Multi-hole Injector for Spark Ignition Engines Fuelled by Gasoline and n-Butanol

2014-10-13
2014-01-2743
Alcohols are largely used in spark-ignition (SI) engines as alternative fuels to gasoline. Particularly, the use of butanol meets growing interest due to its properties that are similar to gasoline, if compared with other alcohols. This paper aims to make a comparative analysis on the atomization process of gasoline and n-butanol fuel injected by a multi-hole injector nozzle for spark ignition engines. Phase Doppler Anemometry technique was applied to investigate the behavior of a spray emerging from a six-hole nozzle for direct injection spark ignition engine applications. Commercial gasoline and pure n-butanol were investigated. The fuels were injected at two pressures: namely at 5 and 10 MPa, in a test vessel at quiescent air conditions, ambient temperature and backpressure. Droplets diameter and velocity were estimated along the axis and on the edge direction of a jet through Phase Doppler Anemometry in order to provide useful information on the atomization process.
Technical Paper

Experimental and 1D Numerical Investigations on the Exhaust Emissions of a Small Spark Ignition Engine Considering the Cylinder-by-Cylinder Variability

2020-04-14
2020-01-0578
This paper reports a numerical and experimental analysis on a twin-cylinder turbocharged Spark Ignition engine carried out to investigate the cylinder-to-cylinder variability in terms of performance, combustion evolution and exhaust emissions. The engine was tested at 3000 rpm in 20 different steady-state operating conditions, selected with the purpose of observing the influence of cylinder-by-cylinder A/F ratio variations and the EGR effects on the combustion process and exhaust emissions for low to medium/high loads. The experimental outcomes showed relevant differences in the combustion evolution (characteristic combustion angles) between cylinders and not negligible variations in the emissions of the single cylinder exhaust and the overall engine one. This misalignment resulted to be due to differences in the injected fuel amount by the port injectors in the two cylinders, mainly deriving from the specific fuel rail geometry.
Technical Paper

Fuel Injection Effect on In-cylinder Formation and Exhaust Emission of Particulate from a 4-Stroke Engine for 2-Wheel Vehicles

2010-04-12
2010-01-0354
The small engine for two-wheel vehicles has generally high possibility to be optimized at low speeds and high loads. In these conditions fuel consumption and pollutants emission should be reduced maintaining the performance levels. This optimization can be realized only improving the basic knowledge of the thermo-fluid dynamic phenomena occurring during the combustion process. It is known that, during the fuel injection phase in PFI SI engines, thin films of liquid fuel can form on the valves surface and on the cylinder walls. Successively the fuel films interact with the intake manifold and the combustion chamber gas flow. During the normal combustion process, it is possible to achieve gas temperature and mixture strength conditions that lead to fuel film ignition. This phenomenon can create diffusion-controlled flames that can persist well after the normal combustion event. These flames induce the emission of soot and unburned hydrocarbons.
Technical Paper

Impact of Cooled EGR on Performance and Emissions of a Turbocharged Spark-Ignition Engine under Low-Full Load Conditions

2019-09-09
2019-24-0021
The stringent worldwide exhaust emission legislations for CO2 and pollutants require significant efforts to increase both the combustion efficiency and the emission quality of internal combustion engines. With this aim, several solutions are continuously developed to improve the combustion efficiency of spark ignition engines. Among the various solutions, EGR represents a well-established technology to improve the gasoline engine performance and the nitrogen-oxides emissions. This work presents the results of an experimental investigation on the effects of the EGR technique on combustion evolution, knock tendency, performance and emissions of a small-size turbocharged PFI SI engine, equipped with an external cooled EGR system. Measurements are carried out at different engine speeds, on a wide range of loads and EGR levels. The standard engine calibration is applied at the reference test conditions.
Technical Paper

Impact of Ethanol-Gasoline Port Injected on Performance and Exhaust Emissions of a Turbocharged SI Engine

2018-04-03
2018-01-0914
This paper presents results of an experimental investigation on a flexible port dual fuel injection using different ethanol to gasoline mass fractions. A four stroke, two cylinder turbocharged SI engine was used for the experiments. The engine speed was set at 3000 rpm, tests were carried out at medium-high load and two air-fuel-ratio. The initial reference conditions were set running the engine, fueled with full gasoline at the KLSA boundary, in accordance with the standard ECU engine map. This engine point was representative of a rich mixture (λ=0.9) in order to control the knock and the temperature at turbine inlet. The investigated fuels included different ethanol-gasoline mass fractions (E10, E20, E30 and E85), supplied by dual injection within the intake manifold. A spark timing sweep, both at stoichiometric and lean (λ=1.1) conditions, up to the most advanced one without knock was carried out.
Technical Paper

In-Cylinder Spectroscopic Measurements of Combustion Process in a SI Engine Fuelled with Butanol-Gasoline Blend

2013-04-08
2013-01-1318
In-cylinder optical diagnostic was applied to study butanol-gasoline blend combustion in a SI engine. Spark timing and fuel injection mode were changed to work in normal and knocking conditions. The experiments were realized in a single-cylinder ported fuel injection SI engine with an external boosting device. The engine worked like-stoichiometric mixture at 2000 rpm, medium boosting and wide open throttle. UV-visible natural emission spectroscopy allowed to follow the formation and the evolution of the main compounds and radical species that characterize the combustion process from the spark ignition until the exhaust. Particular interest was devoted to OH and CO₂* evolution, and to the spectral evidence of soot precursors due to fuel deposits burning. OH resulted the best marker for combustion both in normal and abnormal conditions.
Technical Paper

Multi-Wavelength Spectroscopic Investigations of the Post-Injection Strategy Effect on the Fuel Vapor within the Exhaust Line of a Light Duty Diesel Engine Fuelled with B5 and B30

2013-10-14
2013-01-2519
Optical diagnostic was applied to undiluted engine exhaust to supply a low cost and real time evaluation of the oil dilution tendency of selected fuels. Specifically, UV-visible-near IR extinction spectroscopy was applied in the exhaust line of a Euro 5 turbocharged, water cooled, DI diesel engine, equipped with a common rail injection system. The engine was fuelled with commercial B5 fuel and a B30 v/v blend of RME and ultra low sulfur diesel. The proposed experimental methodology allowed to identify the contribution to the multi-wavelength extinction of soot, fuel vapor, hydrocarbons and nitrogen oxide. Further, the evolution of each species for different post-injection interval settings was followed. On-line optical results were correlated with off-line liquid fuel absorption values. Moreover, spectroscopic measurements were linked to in-cylinder pressure related data and with HC and smoke exhaust emissions.
Technical Paper

Optical Investigation of the Effect on the Combustion Process of Butanol-Gasoline Blend in a PFI SI Boosted Engine

2011-09-11
2011-24-0057
The addition of alcohol to conventional hydrocarbon fuels for a spark-ignition engine can increase the fuel octane rating and the power for a given engine displacement and compression ratio. In this work, the influence of butanol addition to gasoline was investigated. The experiments were performed in an optical ported fuel injection single-cylinder SI engine with an external boosting device. The engine was equipped with the head of a commercial SI turbocharged engine having the same geometrical specifications (bore, stroke and compression ratio). The effect of a blend of 20% of n-butanol and 80% of gasoline (BU20) on in-cylinder combustion process was investigated by cycle-resolved visualization. The engine worked at low speed, medium boosting and wide open throttle. Changes in spark timing and fuel injection phasing were considered. Comparisons between the flame luminosity and the combustion pressure data were performed.
Technical Paper

Plasma Assisted Ignition Effects on a DISI Engine Fueled with Gasoline and Butanol under Lean Conditions and with EGR

2016-04-05
2016-01-0710
Considering the generalized diversification of the energy mix, the use of alcohols as gasoline replacement is proposed as a viable option. Also, alternative control strategies for spark ignition engines (SI) such as lean operation and exhaust gas recirculation (EGR) are used on an ever wider scale for improving fuel economy and reducing the environmental impact of automotive engines. In order to increase the stability of these operating points, alternative ignition systems are currently investigated. Within this context, the present work deals about the use of plasma assisted ignition (PAI) in a direct injection (DI) SI engine under lean conditions and cooled EGR, with gasoline and n-butanol fueling. The PAI system was tested in an optically accessible single-cylinder DISI engine equipped with the head of a commercial turbocharged power unit with similar geometrical specifications (bore, stroke, compression ratio).
Technical Paper

Spectroscopic Investigation of Post-Injection Strategy Impact on Fuel Vapor within the Exhaust Line of a Light Duty Diesel Engine Supplied with Diesel/Butanol and Gasoline Blends

2013-09-08
2013-24-0066
In this paper, a high temporal resolution optical technique, based on the multi-wavelength UV-visible-near IR extinction spectroscopy, was applied at the exhaust of an automotive diesel engine to investigate the post-injection strategy impact on the fuel vapor. Experimental investigations were carried out using three fuels: commercial diesel (B5), a blend of 80% diesel with 20% by vol. of gasoline (G20) and a blend of 80% diesel with 20% by vol. of n-butanol (BU20). Experiments were performed at the engine speed of 2500rpm and 0.8MPa of brake mean effective pressure exploring two post-injection timings and two EGR rates. The optical diagnostic allowed evaluating, during the post-injection activation, the evolution of the fuel vapor in the engine exhaust line. The investigation was focused on the impact of post-injection strategy and fuel properties on the aptitude to produce hydrocarbon rich gaseous exhaust for the regeneration of diesel particulate trap (DPF).
Journal Article

Split Injection in a DISI Engine Fuelled with Butanol and Gasoline Analyzed through Integrated Methodologies

2015-04-14
2015-01-0748
In this study, experiments were carried out in an optical single-cylinder Direct Injection Spark Ignition engine fuelled with n-butanol and gasoline, alternatively. The engine is equipped with the head of a commercial turbocharged engine with similar geometrical specifications (bore, stroke, compression ratio). The head has four valves and a centrally located spark device with surface charge ignition. A conventional elongated hollow Bowditch piston is used and an optical crown, accommodating fused-silica window, is screwed onto it. The injector is side mounted and features 6 holes oriented to guide the jets towards the piston crown. During the experimental activity, the injection pressure was maintained at 100 bar for all conditions; the injection timing and the number of injections were adjusted to investigate their influence on combustion and emissions.
Journal Article

UV-visible Optical Characterization of the Early Combustion Stage in a DISI Engine Fuelled with Butanol-Gasoline Blend

2013-10-14
2013-01-2638
Detailed experimental information on the early stages of spark ignition process represent a substantial part for guiding the development of engines with higher efficiencies and reduced pollutant emissions. Flame kernel formation influences strongly combustion development inside the cylinder, especially for a direct injection spark ignition engine. This study presents the analysis of the evolution of spark-ignited flame kernels with detailed view upon cycle-to-cycle variations. Experiments are performed in a SI optical engine equipped with the cylinder head and injection system of a commercial turbocharged engine. Blend of commercial gasoline and butanol (40% by volume) is tested at stoichiometric and lean mixture conditions. Experiments are carried out at 2000 rpm through conventional tests (based on in-cylinder pressure measurements and exhaust emission analysis) and through optical diagnostics. In particular, UV-visible digital imaging and natural emission spectroscopy are applied.
Journal Article

Water Injection: a Technology to Improve Performance and Emissions of Downsized Turbocharged Spark Ignited Engines

2017-09-04
2017-24-0062
Knock occurrence and fuel enrichment, which is required at high engine speed and load to limit the turbine inlet temperature, are the major obstacles to further increase performance and efficiency of down-sized turbocharged spark ignited engines. A technique that has the potential to overcome these restrictions is based on the injection of a precise amount of water within the mixture charge that can allow to achieve important benefits on knock mitigation, engine efficiency, gaseous and noise emissions. One of the main objectives of this investigation is to demonstrate that water injection (WI) could be a reliable solution to advance the spark timing and make the engine run at leaner mixture ratios with strong benefits on knock tendency and important improvement on fuel efficiency.
X