Refine Your Search

Topic

Search Results

Standard

APPLICATION TESTING OF OIL TO AIR OIL COOLERS FOR COOLING PERFORMANCE

1985-11-01
HISTORICAL
J1468_198511
This Recommended Practice is applicable to oil to air oil coolers installed on mobile or stationary equipment. This document outlines the method of procuring the test data to determine operating characteristics of the oil cooling system and the interpretation of the test results.
Standard

APPLICATION TESTING OF OIL-TO-AIR OIL COOLERS FOR COOLING PERFORMANCE

1993-05-20
HISTORICAL
J1468_199305
This SAE Recommended Practice is applicable to oil-to-air oil coolers installed on mobile or stationary equipment. This document outlines the method of procuring the test data to determine operating characteristics of the oil cooling system and the interpretation of the test results.
Standard

ENGINE COOLING FAN STRUCTURAL ANALYSIS

1982-04-01
HISTORICAL
J1390_198204
It is necessary to identify and attempt to evaluate the characteristics of an application which can have an effect on fan durability. Failures almost always occur in fatigue, so careful attention should be paid to avoid resonance or forced vibration of the fan. This section considers vibrational inputs, fan natural frequencies, and operating speed as part of the initial structural integrity analysis. A fan application fact sheet (Table 1) is recommended as a form to communicate between user and fan supplier.
Standard

ENGINE COOLING FAN STRUCTURAL ANALYSIS

1996-06-01
HISTORICAL
J1390_199606
Three levels of fan structural analysis are included in this practice: 1 Initial Structural Integrity 2 In-vehicle Testing 3 Durability Test Methods The Initial Structural Integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The In-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The Durability Test Methods section describes the detailed test procedures that may be used depending on type of fan, equipment availability, and end objective. Each of the previous levels builds upon information derived from the previous level. Engineering judgment is required as to the applicability of each level to a different vehicle environment or a new fan design.
Standard

Engine Cooling Fan Structural Analysis

2003-04-24
HISTORICAL
J1390_200304
Three levels of fan structural analysis are included in this practice: 1 Initial Structural Integrity 2 In-vehicle Testing 3 Durability Test Methods The Initial Structural Integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The In-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The Durability Test Methods section describes the detailed test procedures that may be used depending on type of fan, equipment availability, and end objective. Each of the previous levels builds upon information derived from the previous level. Engineering judgment is required as to the applicability of each level to a different vehicle environment or a new fan design.
Standard

Engine Cooling Fan Structural Analysis

2022-02-23
CURRENT
J1390_202202
Three levels of fan structural analysis are included in this practice: a Initial structural integrity. b In-vehicle testing. c Durability (laboratory) test methods. The initial structural integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The in-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The durability test methods section describes the detailed test procedures for a laboratory environment that may be used depending on type of fan, equipment availability, and end objective. The second and third levels build upon information derived from the previous level.
Standard

GLOSSARY OF ENGINE COOLING SYSTEM TERMS

1993-04-01
HISTORICAL
J1004_199304
The objective of this glossary is to establish uniform definitions of parts and terminology for engine cooling systems.
Standard

Glossary of Engine Cooling System Terms

1999-02-05
HISTORICAL
J1004_199902
The objective of this glossary is to establish uniform definitions of parts and terminology for engine cooling systems.
Standard

Heavy Duty Vehicle Cooling Test Code R

2004-11-11
HISTORICAL
J1393_200411
This document supersedes SAE J819—Engine Cooling System Field Test. The purpose of this SAE Recommended Practice is to establish a testing procedure to determine the performance capability of the engine cooling systems, including charge air coolers on heavy-duty vehicles with liquid-cooled internal combustion engines. The definition of heavy vehicles for this document includes, but is not limited to, on and off highway trucks, cranes, drill rigs, construction, forestry and agricultural machines. Vehicles equipped with side or rear-mounted radiators may require an alternate procedure of a towing dynamometer because of peculiar aerodynamics. Testing is generally conducted to determine compliance with cooling criteria established by the engine manufacturer or the end product user to meet a desired engine reliability goal.
Standard

Oil Cooler Application Testing and Nomenclature

2021-12-13
CURRENT
J1468_202112
This SAE Recommended Practice is applicable to oil-to-air and oil-to-coolant oil coolers installed on mobile or stationary equipment and provides a glossary of oil cooler nomenclature. Such oil coolers may be used for the purpose of cooling automatic transmission fluid, hydraulic system oil, retarder system fluid, engine oil, etc. This document outlines the methods of procuring the test data to determine the operating characteristics of the oil cooling system and the interpretation of the results.
X