Refine Your Search

Topic

Search Results

Technical Paper

Biomechanics of Bone and Tissue: A Review of Material Properties and Failure Characteristics

1986-10-01
861923
This paper contains a review of current information on biological structure, material properties and failure characteristics of bone, articular cartilage, ligament and tendon. The load-deformation response of biological tissues is presented with particular reference to the microstructure of the material. Although many of the tissues have been characterized as linear, elastic and isotropic materials, they actually have a more complicated response to load, which includes stiffening with increasing strain, inelastic yield, and strain rate sensitivity. Failure of compact and cancellous bone depends on the rate, type, and direction of loading. Soft biological tissues are vlscoelastie and exhibit a higher load tolerance with an increasing rate of loading. The paper includes a discussion on the basic principles of biomechanics and emphasizes material properties and failure characteristics of biological tissues subjected to impact loading.
Technical Paper

Biomechanics of Nonpenetrating Aortic Trauma: A Review

1983-10-17
831608
Life threatening chest injury can involve partial or full tears of the aorta. Investigations of fatal injuries in automobile accidents indicate that aortic trauma occurs in 10-20% of the cases. The major sites of aortic trauma include the aortic isthmus, the root, and the aortic insertion at the diaphragm - all of which are points of aortic tethering. The biomechanics of the injury process involve stretching of the vessel from points of tethering and hydrodynamic increases in blood pressure, which stretch the tissue to failure at a strain of about 150%. The non-isotropic stretch response of aortic tissue is discussed with reference to the frequent transverse orientation of the laceration. Congenital and pathophysiological conditions also influence the failure characteristics of the tissue. The significant factors associated with traumatic injury of the aorta are discussed in this review paper which is based on published technical information.
Technical Paper

Crash Causation: A Case Study of Fatal Accident Circumstances and Configurations

1996-02-01
960458
The causes for 131 fatal crashes of lap-shoulder belted occupants were analyzed for crash causation and avoidance opportunities. Fourteen crash scenarios were determined to depict the situation and circumstance of the accidents. Each scenario is discussed in relation to driver age, actions, behavior, errors and aggressiveness, as well as crash type and other factors influencing the crash. Nearly a third of crashes involved a rapid, unpredictable onset by reckless action or mistake of another driver. The remainder were caused by the driver of the case-vehicle. Some were single vehicle crashes primarily related to excessive speed, aggressive driving, and drifting out of lane. The others were multi-vehicle crashes due primarily to inadvertent errors. The most common errors were right-of-way violations at an intersection, loss of control on wet roads, impact of a stationary vehicle, and lane changing errors.
Technical Paper

Crash Injury Prevention: A Case Study of Fatal Crashes of Lap-Shoulder Belted Occupants

1992-11-01
922523
A case study was conducted of 123 crashes involving 144 fatally injured lap-shoulder belted front-seat occupants. The crashes occurred throughout the United States in 1985-86 and involved 97 driver and 47 right-front passenger deaths in new vehicles. A judgment was made by consensus of a safety panel on the potential for saving the victim's life by the addition of safety technology. Supplemental airbags provided the greatest potential for improving the life-saving effectiveness of current lap-shoulder belts. Overall, airbags may have prevented 12% of the belted occupant fatalities and 27% of the deaths in frontal crashes. The benefit of supplemental airbags was greater for the right-front passenger, in part, because of more females and occupants over 60 years of age in that seating position. A majority (68%) of the belted fatalities were judged unpreventable by reasonable restraint or vehicle modifications.
Technical Paper

Crash Injury Risks for Obese Occupants

2008-04-14
2008-01-0528
Obesity rates are reaching an epidemic worldwide. In the US, nearly 40 million people are obese. The automotive safety community is starting to question the impact of obesity on occupant protection. This study investigates fatality and serious injury risks for front-seat occupants by Body Mass Index (BMI). NASS-CDS data was analyzed for calendar years 1993-2004. Occupant exposure and injury was divided in seven BMI categories with obese defined as those with BMI ≥ 30 kg/m2. Injuries were studied for drivers and right-front passengers and included analysis of lap-shoulder belted and unbelted occupants. The results show that obese occupants have a higher fatality risk compared to normal BMI occupants; morbidly obese occupants (BMI ≥ 40 kg/m2) have 2.25 times higher fatality risk (1.15% v 0.51%). The fatality risk for belted obese drivers was 0.29%, which was 6.7 times lower than the 1.94% for those unbelted. These rates are similar to other BMI occupants.
Technical Paper

Effectiveness of High-Retention Seats in Preventing Fatality: Initial Results and Trends

2003-03-03
2003-01-1351
In 1995, new seat specifications were adopted by GM to provide high retention and improve occupant safety in rear crashes. With more than five years of phase-in of high retention (HR) seats, an analysis of FARS was undertaken to determine the initial field performance of HR seats in preventing fatalities. The 1991-2000 FARS was sorted for fatal rear-impacted vehicles. Using a VIN decoder, GM vehicles with HR front seats were sorted from those with baseline (pre-HR) seats. The fatal rear-impacted vehicle crashes were subdivided into several groups for analysis: 1) single-vehicle rear impacts, 2) two-vehicle rear crashes involving light striking vehicles, and 3) two-vehicle crashes involving heavy trucks and tractor-trailers, and multi-vehicle (3+) rear crashes.
Technical Paper

Effectiveness of Safety Belts and Airbags in Preventing Fatal Injury

1991-02-01
910901
Airbags and safety belts are now viewed as complements for occupant protection in a crash. There is also a view that no single solution exists to ensure safety and that a system of protective technologies is needed to maximize safety in the wide variety of real automotive crashes. This paper compares the fatality prevention effectiveness, and biomechanical principles of occupant restraint systems. It focuses on the effectiveness of various systems in preventing fatal injury assuming the restraint is available and used. While lap-shoulder belts provide the greatest safety, airbags protect both belted and unbelted occupants.
Technical Paper

Energy Transfer to an Occupant in Rear Crashes: Effect of Stiff and Yielding Seats

2003-03-03
2003-01-0180
For several decades, there has been a debate on the safety merits of yielding and rigidized (stiff) seats. In 1995, GM adopted requirements for high retention seats and introduced a new generation of yielding seatbacks. These seats have the same stiffness as the yielding seats of the 1980s and early 1990s, but have a strong frame structure and recliners to substantially limit seatback rotation in severe rear crashes. The yielding behavior is given by compliance of the seat suspension across the side structures and an open perimeter frame, which allows the occupant to penetrate into the seatback. The purpose of this study is to compare the energy transfer characteristics and occupant dynamics of yielding and stiff seats in 35 km/h and 16 km/h rear crashes. Based on benchmarking tests, the stiff seatback is defined as one having a 40 kN/m stiffness in rearward loading by a Hybrid dummy.
Technical Paper

Fatal Crashes of Female Drivers Wearing Safety Belts

1996-02-01
960459
Fatal crash circumstances for 48 belted female drivers were studied in-depth and compared to those of 83 belted male drivers in a similar population of vehicles. Women had a higher incidence of crashes on slippery roads, during lane changes and passing maneuvers than men who had a higher rate of aggressive driving and speed related crashes (χ2 = 10.47, p < 0.001). Driver-side damage was significantly more frequent in female than male crashes (χ2 = 5.74, p < 0.025) and women had a higher fraction of side impacts (45.9% v 31.4%) and crashes during daylight (87.0% v 72.3%, χ2 = 3.65, p < 0.05) than men. Women also had a higher fraction of potentially avoidable crashes than men (57.5% v 39.0%) and a lower involvement related to aggressive driving (10.6% v 25.6%). These differences were statistically significant (χ2 = 5.41, p < 0.025).
Technical Paper

Fatalities by Seating Position and Principal Direction of Force (PDOF) for 1st, 2nd and 3rd Row Occupants

2008-05-12
2008-01-1850
Purpose: A better understanding of rear occupant fatality risks is needed to guide the development of safety improvements for 2nd and 3rd row occupants. This study investigates fatal accidents of 1st, 2nd and 3rd row occupants by principal direction of force (PDOF), irrespective of restraint use. It determined the number of fatalities, exposure and fatality risk. Methods: 1996-2005 FARS was analyzed for occupant fatalities by seating position (1st, 2nd and 3rd row) and principal direction of force (1-12 o'clock PDOF, rollover and other/unknown). Light vehicles were included with model year 1990+. 1996-2005 NASS-CDS was similarly analyzed for occupant exposure. Fatality risk was defined as the number of fatalities in FARS for a given category divided by the exposure from NASS-CDS. Results: Ten percent (9.6%) of fatalities were to 2nd row occupants in FARS. About 2,080 deaths occur to 2nd row occupants annually. 38.4% died in rollovers and 26.8% in frontal crashes.
Technical Paper

Field Data Analysis of Rear Occupant Injuries Part I: Adults and Teenagers

2003-03-03
2003-01-0153
Since more occupants are using rear seats of vehicles, a better understanding of priorities for rear occupant protection is needed as future safety initiatives are considered. A two-part study was conducted on occupant injuries in rear seating positions. In Part I, adult and teenage occupants ≥13 years of age are investigated. In Part II, children aged 4-12 years old and toddlers and infants aged 0-3 are studied separately because of the use of infant and child seats and boosters involve different injury mechanisms and tolerances. The objectives of this study on adult and teenager, rear-seated occupants (≥13 years old) are to: 1) review accident data, 2) identify the distribution of rear occupants, and 3) analyze injury risks in various crash modes, including rollovers, frontal, side and rear impacts. Three databases were investigated: NASS-CDS, GES and FARS.
Technical Paper

Fracture-Dislocation of the Thoracic Spine in Extension by Upright Seats in Severe Rear Crashes

2011-04-12
2011-01-0274
Purpose: This study presents cases of fracture-dislocation of the thoracic spine in extension during severe rear impacts. The mechanism of injury was investigated. Methods: Four crashes were investigated where a lap-shoulder-belted, front-seat occupant experienced fracture-dislocation of the thoracic spine and paraplegia in a severe rear impact. Police, investigator and medical records were reviewed, the vehicle was inspected and the seat detrimmed. Vehicle dynamics, occupant kinematics and injury mechanisms were determined in this case study. Results: Each case involved a lap-shoulder-belted occupant in a high retention seat with ≻1,700 Nm moment or ≻5.5 kN strength for rearward loading. The crashes were offset rear impacts with 40-56 km/h delta V involving under-ride or override by the impacting vehicle and yaw of the struck vehicle. In each case, the occupant's pelvis was restrained on the seat by the open perimeter frame of the seatback and lap belt.
Journal Article

Front Seat Performance in Rear Impacts: Effect on 1st and 2nd Row Occupant Injury

2009-04-20
2009-01-0252
Purpose: This study analyzes the effect of front seat performance on occupant injury in rear crashes where there is a 2nd row passenger seated behind the front occupant. Methods: The study was carried out for rear impact crashes in the 1991–2006 NASS-CDS. Only cases where there was a 2nd row occupant seated behind an occupied front seat were chosen. Serious injury (MAIS 3+F) was determined for the front and 2nd row occupants. The performance of the front seat was determined using eight NASS-CDS investigator categories, including no failure, seat failure of the adjuster, seatback or track-anchor and seat deformation by the occupant or intrusion. The rear crashes were subdivided into four severities (<15, 15–25, 25–45 and >45 mph). The risk for serious injury was determined for each category of seat performance. Next, individual cases were reviewed from the online NASS electronic files to better understand the determination of seat performance by the NASS-CDS investigators.
Technical Paper

High Retention Seat Performance in Quasistatic Seat Tests

2003-03-03
2003-01-0173
A new generation of seats has been designed to specifications for high retention (HR) in a Quasistatic Seat Test (QST). The QST involves occupant loading of the seat in a rearward direction and targets peak H-point moment to >1700 Nm giving an energy transfer capability of 2000 J. QST tests from 1998-2000 were compared to results from pre-HR seat designs of the late 1980s and early 1990s to determine performance improvements. Twenty-seven QST tests of HR seats were randomly selected from a larger series and were evaluated for strength and seat deformation under occupant loading. They represented 20 different seat types from four suppliers. Averages and standard deviations in QST results were computed. In addition, eight repeat tests were conducted with one seat to determine repeatability of the QST. These data were compared to an earlier repeatability study of the 1994 W pre-HR seat, which was evaluated at two facilities.
Technical Paper

History of Safety Research and Development on the General Motors Energy-Absorbing Steering System

1991-10-01
912890
This paper covers the development of the General Motors Energy Absorbing Steering System beginning with the work of the early crash injury pioneers Hugh DeHaven and Colonel John P. Stapp through developments and introduction of the General Motors energy absorbing steering system in 1966. evaluations of crash performance of the system, and further improvement in protective function of the steering assembly. The contributions of GM Research Laboratories are highlighted, including its safety research program. Safety Car, Invertube, the biomechanic projects at Wayne State University, and the thoracic and abdominal tolerance studies that lead to the development of the Viscous Injury Criterion and self-aligning steering wheel.
Technical Paper

Influence of Seatback Angle on Occupant Dynamics in Simulated Rear-End Impacts

1992-11-01
922521
In the early 1980's a series of tests was conducted simulating rear-end crashes. The tests demonstrated that a conventional automotive bucket seat adequately retains an unbelted dummy on the seat for rear-end impacts up to 6.4 m/s and 9.5 g severity. For this severity of impact the total rearward rotation of the seatback is less than 60° from the vertical and is associated with a normal acceleration of the dummy's chest into the seatback of up to 10 g. The tangential acceleration of the dummy, which may induce riding up the seat, was generally less than the normal component so that the occupant was prevented from sliding up the deflected seatback. The bucket seat provided adequate containment and control of occupant displacements for each of the initial seatback angles of 9°, 22°, and 35°.
Technical Paper

Interrelationship of Velocity and Chest Compression in Blunt Thoracic Impact to Swine

1981-10-01
811016
As part of a continuing study of thoracic injury resulting from blunt frontal loading, the interrelationship of velocity and chest compression was investigated in a series of animal experiments. Anesthetized male swine were suspended in their natural posture and subjected to midsternal, ventrodorsad impact. Twelve animals were struck at a velocity of 14.5 ± 0.9 m/s and experienced a controlled thoracic compression of either 15, 19, or 24%. Six others were impacted at 9.7 ± 1.3 m/s with a greater mean compression of 27%. For the 14.5 m/s exposures the severity of trauma increased with increasing compression, ranging from minor to fatal. Injuries included skeletal fractures, pulmonary contusions, and cardiovascular ruptures leading to tamponade and hemothorax. Serious cardiac arrhythmias also occurred, including one case of lethal ventricular fibrillation. The 9.7 m/s exposures produced mainly pulmonary contusion, ranging in severity from moderate to critical.
Technical Paper

Neck Biomechanical Responses with Active Head Restraints: Rear Barrier Tests with BioRID and Sled Tests with Hybrid III

2002-03-04
2002-01-0030
Active head restraints are being used to reduce the risk of whiplash in rear crashes. However, their evaluation in laboratory tests can vary depending on the injury criteria and test dummy. The objective of this study was to conduct barrier tests with BioRID and sled tests with Hybrid III to determine the most meaningful responses related to whiplash risks in real-world crashes. This study involved: (1) twenty-four rear barrier tests of the Saab 9000, 900, 9-3 and 9-5 with two fully instrumented BioRID dummies placed in the front or rear seats and exposed to 24 and 48.3 km/h barrier impacts, and (2) twenty rear sled tests at 5-38 km/h delta V in three series with conventional, modified and SAHR seats using the Hybrid III dummy. A new target superposition method was used to track head displacement and rotation with respect to T1. Insurance data on whiplash claims was compared to the dummy responses.
Book

Occupant and Vehicle Responses in Rollovers

2004-03-08
During the past decade, there has been a steady increase in studies addressing rollover crashes and injuries. Though rollovers are not the most frequent crash type, they are significant with respect to serious injury and interest in rollovers has grown with the introduction of SUVs, vans, and light trucks. A review of Occupant and Vehicle Responses in Rollovers examines relevant conditions for field roll overs, vehicle responses, and occupant kinetics in the vehicle. This book edited by Dr. David C. Viano and Dr. Chantal S. Parenteau includes 62 technical documents covering 15 years of rollover crash safety, including field crash statistics, pre- and rollover dynamics, test procedures and dummy responses.
Technical Paper

Rear Impact Tests of Starcraft-Type Seats with Out-of-Position and In-Position Dummies

2011-04-12
2011-01-0272
Objective: This study analyzed available rear impact sled tests with Starcraft-type seats that use a diagonal belt behind the seatback. The study focused on neck responses for out-of-position (OOP) and in-position seated dummies. Methods: Thirteen rear sled tests were identified with out-of-position and in-position 5 th , 50 th and 95 th Hybrid III dummies in up to 47.6 mph rear delta Vs involving Starcraft-type seats. The tests were conducted at Ford, Exponent and CSE. Seven KARCO rear sled tests were found with in-position 5 th and 50 th Hybrid III dummies in 21.1-29.5 mph rear delta Vs involving Starcraft-type seats. In all of the in-position and one of the out-of-position series, comparable tests were run with production seats. Biomechanical responses of the dummies and test videos were analyzed.
X