Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

A Study of the Vapor- and Particle-Phase Sulfur Species in the Heavy-Duty Diesel Engine EGR Cooler

1998-05-04
981423
To meet future NO, heavy-duty diesel emissions standards, exhaust gas recirculation (EGR) technology is likely to be used. To improve fuel economy and further lower emissions, the recirculated exhaust gas needs to be cooled, with the possibility that cooling of the exhaust gas may form sulfuric acid condensate in the EGR cooler. This corrosive condensate can cause EGR cooler failure and consequentially result in severe damage to the engine. Both a literature review and a preliminary experimental study were conducted. In this study, a manually controlled EGR system was installed on a 1995 Cummins Ml l-330E engine which was operated at EPA mode 9* (1800 rpm and 75% load). The Goksoyr-Ross method (1)** was used to measure the particle-phase sulfate and vapor-phase H2SO4 and SO2 at the inlet and outlet locations of the EGR cooler, obtaining H2SO4 and SO2 concentrations. About 0.5% of fuel sulfur in the EGR cooler was in the particle-phase.
Technical Paper

A Turbocharged Spark Ignition Engine with Low Exhaust Emissions and Improved Fuel Economy

1973-02-01
730633
Turbocharging, in addition to increasing an engine's power output, can be effectively used to maintain exhaust emission levels while improving fuel economy. This paper presents the emission and performance results obtained from a turbocharged multicylinder spark ignition engine with thermal reactors and exhaust gas recirculation (EGR) operated at steady-state, part-load conditions for four engine speeds. When comparing a turbocharged engine to a larger displacement naturally aspirated engine of equal power output, the emissions expressed in grams per mile were relatively unchanged both with and without EGR. However, turbocharging provided an average of 20% improvement in fuel economy both with and without EGR. When comparing the turbocharged and nonturbocharged versions of the same engine without EGR at a given load and speed, turbocharging increased the hydrocarbon (HC) and carbon monoxide (CO) emissions and decreased oxides of nitrogen (NOx) emissions.
Technical Paper

An Emission and Fuel Usage Computer Model for Trucks and Buses

1978-02-01
780630
This paper presents the development of a computer model to simulate fuel usage and emission contributions of the past and future truck and bus population in the United States. The projected future years are beyond 1976 to 1990. The trends in vehicle population growth, yearly miles traveled and ton-miles are also calculated by the model. The model developed is flexible and brings together several technical concepts which reflect recent inputs from industry and government. The formulation of the model is based on a systems approach, in which the several submodels (the "Population," "Mileage," "Fuel Usage," and "Emission") are interrelated. The preliminary quantitative results are discussed to demonstrate the satisfactory performance of the computer model. Increased rates of dieselization are analyzed to determine their effect on reducing fuel consumption and the impact on total emission contributions. The use of the computer model to study an urban area for air quality is discussed.
Technical Paper

Design and Computer Simulation of Microprocessor Controlled Lubricating Oil Cooling System for Truck Diesel Engine

1988-02-01
880488
A microprocessor controlled lubricating oil cooling system of truck diesel engine was designed to minimize the sump oil temperature fluctuation during start-up and nonsteady engine operations. Model reference adaptive control method is utilized in the control system design. The analysis involved in the design of the microprocessor controlled oil cooling system, and the applications of a special vehicle-engine-cooling system (VEC) computer simulation code in the implementation and testing of the model reference adaptive control strategy are described. Using the VEC simulation code, the performance of the microprocessor controlled oil cooling system and the conventionally controlled oil cooling systems were compared for the ATB, temperature disturbances, and cold weather transient tests. An explanation of each test, as well as a review of the results of comparison tests are presented.
Technical Paper

Emissions and Fuel Usage by the U. S. Truck and Bus Population and Strategies for Achieving Reductions

1974-02-01
740537
This paper presents an approach to modeling the United States truck and bus population. A detailed model is developed that utilizes domestic factory sales figures combined with a scrappage factor as a building block for the total population. Comparison with historical data for 1958-1970 shows that the model follows trends well for intermediate parameters such as total vehicle miles per year, total fuel consumption, scrappage, etc. Fuel consumption and HC, CO, NO2, CO2 and particulate matter emissions for gasoline and diesel engines are of primary interest. The model details these parameters for the time span 1958-2000 in one-year increments. For HC and CO, truck and bus emissions could equal or exceed automobile emissions in the early 1980s, depending on the degree of control. Three population control strategies are analyzed to determine their effects on reducing fuel consumption or air pollution in later years.
Technical Paper

The Design and Testing of a Computer-Controlled Cooling System for a Diesel-Powered Truck

1984-11-01
841712
The hardware and software for a prototype computer controlled cooling system for a diesel powered truck has been designed and tested. The basic requirements for this system have been defined and the control functions, previously investigated in a study using the computer simulation model, were incorporated into the software. Engine dynamometer tests on the MACK-676 engine, comparing the conventional cooling system and the computer controlled system, showed the following advantages of the computer controlled system: 1. The temperature level to which the engine warms up to at low ambient temperature, was increased. 2. The faster shutter response reduced the temperature peaks and decreased total fan activity time. 3. The faster fan response reduces fan engagement time which should improve truck fuel economy.
Technical Paper

The Design of a 4 Wheel Steer-4 Wheel Hydrostatic Drive All-Terrain Vehicle for REV-74

1975-02-01
750144
Recreational Ecological Vehicle (REV) 74 was an intercollegiate All Terrain Vehicle (ATV) design competition organized by the Milwaukee and Cincinnati Sections of SAE. Students from six colleges built ATV's to compete May 30-June 1, 1974 at Michigan Technological University's Keweenaw Research Center test course. Competing categories of noise level, destructiveness to terrain and a 25 mile race over land and water are discussed from the viewpoint of the technical rules and as to the actual course involved with the competition. Michigan Tech designed and built a 4 wheel steer-4 wheel hydrostatic drive ATV for REV-74. This paper provides a detailed design description of the Michigan Tech vehicle along with a review of several production ATV designs and their specifications. Finally, a report of the results of REV-74 is presented.
Technical Paper

The Effect of Truck Dieselization on Fuel Usage

1981-02-01
810022
The effect of truck dieselization for three levels of diesel penetration into each of the eight classes of trucks is modeled. Diesel and total truck sales, population, mileage and yearly fuel usage data are aggregated by four truck classes representing light, medium, light-heavy and heavy-heavy classes. Four fuel economy scenario's for different technological improvements were studied. Improvement of fuel economy for light and heavy-heavy duty vehicle classes provides significant total fuel savings. Truck dieselization of light and light-heavy duty vehicle classes provides the largest improvement of fuel usage due to the fact that they have large numbers of vehicles and presently have few diesels. Total car and truck fuel usage in the 1980's shows roughly a constant demand with cars decreasing due to improved new fleet fuel economy and trucks increasing due to a larger population with better fuel economy due to dieselization and improved technology.
Technical Paper

Vehicle Engine Aftertreatment System Simulation (VEASS) Model: Application to a Controls Design Strategy for Active Regeneration of a Catalyzed Particulate Filter

2005-04-11
2005-01-0970
Heavy-duty diesel engine particulate matter (PM) emissions must be reduced from 0.1 to 0.01 grams per brake horsepower-hour by 2007 due to EPA regulations [1]. A catalyzed particulate filter (CPF) is used to capture PM in the exhaust stream, but as PM accumulates in the CPF, exhaust flow is restricted resulting in reduced horsepower and increased fuel consumption. PM must therefore be burned off, referred to as CPF regeneration. Unfortunately, nominal exhaust temperatures are not always high enough to cause stable self-regeneration when needed. One promising method for active CPF regeneration is to inject fuel into the exhaust stream upstream of an oxidation catalytic converter (OCC). The chemical energy released during the oxidation of the fuel in the OCC raises the exhaust temperature and allows regeneration.
X