Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Can Fuel Preparation Affect Engine-Out Hydrocarbon Emissions during an FTP (75CVS) Cycle Test?

2001-03-05
2001-01-1312
The effect of fuel preparation on time-resolved, engine-out hydrocarbon (HC) emissions over a Federal Test Procedure cycle [FTP (75CVS)] for a ULEV vehicle equipped with a 6 cylinder engine has been investigated. Using a single-cone injector, the HC mole fraction in Bag 1 increased by a factor of 3-4 during each of the three accelerations in the first 100 sec after start. No such increases were observed in Bag 3 when the engine was fully warm. The increases during accelerations in Bag 1 were reduced by a factor of 3 when using a Dual-cone fuel injector as a drop-in substitute. The total, tailpipe FTP (75CVS) mass emissions were 25% smaller when using the Dual-cone injector. These results demonstrate that fuel preparation can affect HC emissions from a vehicle very significantly during cold start as has been deduced previously during cold-start tests using a dynamometer-controlled engine.
Technical Paper

Compression Ratio and Coolant Temperature Effects on HC Emissions from a Spark- Ignition Engine

1995-02-01
950163
Modern four-valve engines are running at ever higher compression ratios in order to improve fuel efficiency. Hotter cylinder bores also can produce increased fuel economy by decreasing friction due to less viscous oil layers. In this study changes in compression ratio and coolant temperature were investigated to quantify their effect on exhaust emissions. Tests were run on a single cylinder research engine with a port-deactivated 4-valve combustion chamber. Two compression ratios (9.15:1 and 10.0:1) were studied at three air/fuel ratios (12.5, 14.6 and 16.5) at a part load condition (1500 rpm, 3.8 bar IMEP). The effect of coolant temperature (66 °C and 108°C) was studied at the higher compression ratio. The exhaust was sampled and analyzed for both total and speciated hydrocarbons. The speciation analysis provided concentration data for hydrocarbons present in the exhaust containing twelve or fewer carbon atoms.
Technical Paper

Detailed Hydrocarbon Species and Particulate Emissions from a HCCI Engine as a Function of Air-Fuel Ratio

2005-10-24
2005-01-3749
Concentrations of individual species in the engine-out exhaust gas from a gasoline-fueled (101.5 or 91.5 RON), direct-injection, compression-ignition (HCCI) engine have been measured by gas chromatography over the A/F range 50 to 230 for both stratified and nearly homogeneous fuel-air mixtures. The species identified include hydrocarbons, oxygenated organic species, CO, and CO2. A single-cylinder HCCI engine (CR = 15.5) with heated intake charge was used. Measurements of the mass and size distribution of particulate emissions were also performed. The 101.5 RON fuel consisted primarily of five species, simplifying interpretation of the exhaust species data: iso-pentane (24%), iso-octane (22%), toluene (17%), xylenes (10%), and trimethylbenzenes (9%).
Technical Paper

Effect of Engine Operating Parameters on Hydrocarbon Oxidation in the Exhaust Port and Runner of a Spark-Ignited Engine

1995-02-01
950159
The effect of engine operating parameters (speed, spark timing, and fuel-air equivalence ratio [Φ]) on hydrocarbon (HC) oxidation within the cylinder and exhaust system is examined using propane or isooctane fuel. Quench gas (CO2) is introduced at two locations in the exhaust system (exhaust valve or port exit) to stop the oxidation process. Increasing the speed from 1500 to 2500 RPM at MBT spark timing decreases the total, cylinder-exit HC emissions by ∼50% while oxidation in the exhaust system remains at 40% for both fuels. For propane fuel at 1500 rpm, increasing Φ from 0.9 (fuel lean) to 1.1 (fuel rich) reduces oxidation in the exhaust system from 42% to 26%; at 2500 RPM, exhaust system oxidation decreases from 40% to approximately 0% for Φ = 0.9 and 1.1, respectively. Retarded spark increases oxidation in the cylinder and exhaust system for both fuels. Decreases in total HC emissions are accompanied by increased olefinic content and atmospheric reactivity.
Technical Paper

Effect of Fuel Dissolved in Crankcase Oil on Engine-Out Hydrocarbon Emissions from a Spark-Ignited Engine

1997-10-01
972891
A single-cylinder, spark-ignited engine was run on a certification test gasoline to saturate the oil in the sump with fuel through exposure to blow-by gas. The sump volume was large relative to production engines making its absorption-desorption time constant long relative to the experimental time. The engine was motored at 1500 RPM, 90° C coolant and oil temperature, and 0.43 bar MAP without fuel flow. Exhaust HC concentrations were measured by on-line FID and GC analysis. The total motoring HC emissions were 150 ppmC1; the HC species distribution was heavily weighted to the low-volatility components in the gasoline. No high volatility components were visible. The engine was then fired on isooctane fuel at the above conditions, producing a total engine-out HC emission of 2300 ppmC1 for Φ = 1.0 and MBT spark timing.
Technical Paper

Effect of Fuel Preparation on Cold-Start Hydrocarbon Emissions from a Spark-Ignited Engine

1996-10-01
961957
Total and speciated, engine-out, hydrocarbon (HC) emissions have been measured as a function of time after a 23°C cold start of a gasoline-fueled, V-8 engine. Hydrocarbon emissions from two fuel injection systems were compared: a production port-fuel-injection (PFI) system; and a pre-vaporized (heated) central-fuel-injection (PV-CFI) system. The results indicate that, for this particular engine at the chosen operating conditions, the effect of fuel preparation on HC emissions during cold start is minimal at low load (2.57 bar IMEP (gross), MAP = 0.34 bar) but becomes significant at higher load (5.15 bar IMEP, MAP = 0.58 bar) early in the cold start. Comparison of the relative contribution to the exhaust HC of a series of fuel-derived alkanes suggests that fuel absorption in oil films is a minor contributor to HC emissions from this engine during a 23°C cold start.
Technical Paper

Effects of Port-Injection Timing and Fuel Droplet Size on Total and Speciated Exhaust Hydrocarbon Emissions

1993-03-01
930711
The requirement of reducing HC emissions during cold start and improving transient performance has prompted a study of the fuel injection process. Port-fuel-injection with the Intake-valve open using small droplets is a potentially feasible option to achieve the goals. To gain a better understanding of the injection process, the effects of droplet size, injection timing, and coolant temperature on the total and speciated HC emissions were tested In a Single-cylinder engine. It was found that droplet size plays an important role in the total HC emission increase during open-valve injection, especially with cold operation. Large droplets (300 μm SMD) produced a substantial HC increase while small droplets (14 μm SMD) produced no observable increase. Increase In the total HC emissions was always accompanied by an increase in the heavy fuel components in the exhaust gases.
Technical Paper

Engine-Out Emissions from a Direct-Injection Spark-Ignition (DISI) Engine

1999-05-03
1999-01-1529
The effects of operating parameters (speed, load, spark-timing, EGR, and end of fuel injection timing [EOI]) on engine-out, regulated (total HC, NOx, and CO) and speciated HC emissions have been investigated for a 1.83 L direct-injection, spark-ignition (DISI) engine. As the EOI is varied over the range from high to low stratification with other engine parameters held constant, the mole fractions of all regulated emissions vary sharply over relatively small (10-20 crank angle degrees [CAD]) changes in EOI, suggesting that emissions are very sensitive to the evaporation, mixing, and motion of the stratified fuel cloud prior to ignition. The contribution of unburned fuel to the HC emissions decreases while the olefinic partial oxidation products increase as the fuel stratification increases, increasing the smog reactivity of the HC in the exhaust gas by 25%.
Technical Paper

Exhaust Emissions from a Direct-Injection Spark-Ignition (DISI) Engine Equipped with an Air-Forced Fuel Injector

2000-03-06
2000-01-0254
The effects of fuel injection and spark timing on engine-out, regulated (total HC, NOx, and CO) and speciated HC emissions have been investigated for a 0.31L, single-cylinder, direct-injection, spark-ignition (DISI) engine equipped with an air-forced fuel injector. When the timing of the start of the air injection (SOA) is varied during high stratification operation, the mole fractions of all regulated emissions vary sharply over relatively small (20-30 crank angle degrees) changes in SOA. In addition, the distribution of exhaust hydrocarbon species changes significantly. As stratification increases, the contribution of unburned paraffinic fuel components to the HC emissions decreases by a factor of two while the olefinic partial oxidation products increase. When the spark timing is varied during high stratification operation, the HC emissions increase sharply as the spark timing is retarded relative to MBT.
Technical Paper

Fuel Composition Effects on Hydrocarbon Emissions from a Spark-Ignited Engine - Is Fuel Absorption in Oil Significant?

1995-10-01
952542
Absorption of fuel in engine oil layers has been shown to be a possible source of hydrocarbon (HC) emissions from spark-ignited engines. However, the magnitude of this source in a normally operating engine has not been determined unambiguously. In these experiments, a series of n-alkanes of widely different solubility (n-hexane through undecane) was added (1.5 wt % each) to a Base gasoline (CA Phase 2). Steady-state experiments were carried out at two coolant temperatures (339 and 380 K) using a single-cylinder engine with the combustion chamber of a production V-8. Both total and speciated engine-out HC emissions were measured. The emissions indices of the heavier dopants did not increase relative to hexane at either coolant temperature.
Technical Paper

Fuel Structure and the Nature of Engine-Out Emissions

1994-10-01
941960
For several years, a single-cylinder, spark-ignited engine without catalyst has been operated at Ford on single-component fuels that are constituents of gasoline as well as on simple fuel mixtures. This paper presents a review of these experiments as well as others pertinent to understanding hydrocarbon emissions. The engine was run at four steady-state conditions which are typical of normal operation. The fuel structure and the engine operating conditions affected both the total HC emissions and the reactivity of these emissions for forming photochemical smog in the atmosphere. These experiments identified major precursor species of the toxic HC emissions benzene and 1,3-butadiene to be alkylated benzenes and either straight chain terminal olefins or cyclic alkanes, respectively. In new data presented, the primary exhaust hydrocarbon species from MTBE combustion is identified as isobutene.
Technical Paper

The Effect of Air/Fuel Ratio on Wide Open Throttle HC Emissions from a Spark-Ignition Engine

1994-10-01
941961
Currently most automotive manufacturers calibrate for rich air/fuel ratios at wide open throttle which produces lower exhaust gas temperatures. Future federal emissions regulations may require less enrichment under these conditions. This study was undertaken to address the question of what happens to engine-out hydrocarbon emissions with different air/fuel ratios at wide open throttle. Tests were run on a single cylinder research engine with a two valve combustion chamber at a compression ratio of 9:1. The test matrix included three air/fuel ratios (10.5, 12.5 and 14.5) and two speeds (1500 and 3000 rpm) at wide open throttle as well as three air/fuel ratios (12.5, 14.6 and 16.5) at a part load condition (1500 rpm, 3.8 bar IMEP). The exhaust was sampled and analyzed for both total and speciated hydrocarbons. The speciation analysis provided concentration data for hydrocarbons present in the exhaust containing twelve or fewer carbon atoms.
Technical Paper

The Effect of Dimethoxy Methane Additive on Diesel Vehicle Particulate Emissions

1998-10-19
982572
FTP emissions tests on a passenger vehicle equipped with a 1.8 L IDI turbo-charged diesel engine show that the mass emissions of particles decrease by (36±8)% when 16.6% dimethoxymethane (DMM) by volume is added to a diesel fuel. Particle size measurements reveal log-normal accumulation mode distributions with number weighted geometric mean diameters in the 80 - 100 nm range. The number density is comparable for both base fuel and the DMM/diesel blend; however, the distributions shift to smaller particle diameter for the blend. This shift to smaller size is consistent with the observed reduction in particulate mass. No change is observed in NOx emissions. Formaldehyde emissions increase by (50±25)%, while emissions of other hydrocarbons are unchanged to within the estimated experimental error.
Technical Paper

Time-Resolved Measurement of Speciated Hydrocarbon Emissions During Cold Start of a Spark-Ignited Engine

1994-03-01
940963
Speciated HC emissions from the exhaust system of a production engine without an active catalyst have been obtained with 3 sec time resolution during a 70°F cold start using two control strategies. For the conventional cold start, the emissions were initially enriched in light fuel alkanes and depleted in heavy aromatic species. The light alkanes fell rapidly while the lower vapor pressure aromatics increased over a period of 50 sec. These results indicate early retention of low vapor pressure fuel components in the intake manifold and exhaust system. Loss of higher molecular weight HC species does occur in the exhaust system as shown by experiments in which the exhaust system was preheated to 100° C. The atmospheric reactivity of the exhaust HC emissions for photochemical smog formation increases as the engine warms.
X