Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

A 50cc Two-Stroke DI Compression Ignition Engine Fuelled by DME

2008-06-23
2008-01-1535
The low auto-ignition temperature, rapid evaporation and high cetane number of dimethyl ether (DME) enables the use of low-pressure direct injection in compression ignition engines, thus potentially bringing the cost of the injection system down. This in turn holds the promise of bringing CI efficiency to even the smallest engines. A 50cc crankcase scavenged two-stroke CI engine was built based on moped parts. The major alterations were a new cylinder head and a 100 bar DI system using a GDI-type injector. Power is limited by carbon monoxide emission but smoke-free operation and NOx < 200ppm is achieved at all points of operation.
Technical Paper

A Model for Hydrocarbon Emissions from SI Engines

1990-10-01
902169
A model which calculates the hydrocarbon emissions from an SI engine is presented. The model was developed in order to obtain a better under-standing of experimental results from an engine operating on different fuels and lubricants. The model is based on the assumptions that fuel is stored in crevices and oil film during intake and compression followed by desorption during expansion and exhaust. The model also calculates the amount of desorbed material that undergoes in cylinder oxidation and exhaust port oxidation. The model succesfully predicts the trends followed by varying different engine parameters. The effect of changing the lubricant is of the same order of magnitude as found experimentally, but the effect of changing the fuel could not be predicted very well by the model. A possible explanation is, that the lubricant film thickness varies due to viscosity variations of the oil film, when the fuel is dissolved in the film.
Technical Paper

A New Family of Nonlinear Observers for SI Engine Air/Fuel Ratio Control

1997-02-24
970615
In general most engine models for control applications have been constructed using regressions fitting and measured engine data. Such techniques have also been used to model the dynamic performance of engines. Unfortunately regression equation models are very complex and do not show directly the physical reality from which they emerge. This has for example made it impossible to write down explicitly the dymanic equations for, for example, the air exchange process in an SI engine in any form other than as the manifold pressure state equation. In recent a publication a Mean Value Engine Model (MVEM) has been constructed for an SI engine which is physically based and which has a simple physical form which can be immediately understood and manipulated.
Technical Paper

A PC Engine Control Development System

1991-02-01
910259
Given the rather complicated set of coordinated control inputs which are necessary to control a spark ignition engine, primary control system development and evaluation can be a very difficult task. It is also difficult to develop microprocessor systems which are flexible enough for rapid system reconfiguration. In this paper it is shown that a Personal Computer (PC) provides an excellent solution to this common problem. Possible execution time problems are avoided by the use of a special multitasking environment and simple external hardware. The external hardware takes care of the cycle to cycle fueling and spark advance timing calculations. The PC itself uses its execution time only for calculating new fueling pulse widths and spark advance angles when the operating point of the engine changes. There is also extra computing capacity available for system simulations, condition monitoring, fault detection or perhaps driver information.
Technical Paper

Advanced Nonlinear Engine Idle Speed Control Systems

1994-03-01
940974
One of the most important operating modes for SI engines is in the idle speed region. This is because SI engines spend a large part of their time operating in this mode. Moreover, a large measure of operator satisfaction is dependent on an engine operating smoothly and reliably in and around idle. In particular the operator expects that the idle speed will remain constant in spite of the engine loads due to power steering pumps and air conditioning compressors. In the idle speed region an SI engine is thought to be quite nonlinear because the engine loading can be quite significant, thus forcing the engine to be driven through a reasonably large portion of its lower operating range. Many of the earlier studies of idle speed control systems have dealt with linearized models which in principle have limited validity for the problem at hand. In order to improve this situation, it is necessary to deal with the more general nonlinear control problem.
Technical Paper

Compact and Accurate Turbocharger Modelling for Engine Control

2005-04-11
2005-01-1942
With the current trend towards engine downsizing, the use of turbochargers to obtain extra engine power has become common. A great difficulty in the use of turbochargers is in the modelling of the compressor map. In general this is done by inserting the compressor map directly into the engine ECU (Engine Control Unit) as a table. This method uses a great deal of memory space and often requires on-line interpolation and thus a large amount of CPU time. In this paper a more compact, accurate and rapid method of dealing with the compressor modelling problem is presented. This method is physically based and is applicable to all turbochargers with radial compressors for either Spark Ignition (SI) or diesel engines.
Technical Paper

Conventional Event Based Engine Control

1994-03-01
940377
Many existing production engine controllers use event (or constant crank angle increment) based sampling and computation systems. Because the engine events are synchronized to the internal physical processes of an engine, it is widely accepted that this is the most logical approach to engine control. It is the purpose of this paper to deal with this assumption in detail and to illuminate various failures of it in practical systems. The approach of the paper is in terms of overall general control system design. That is to say that the problem of event based engine control is considered as a general control problem with its standard components: 1. modelling (engine plus actuator/sensor), 2. specification of desired performance goals, 3. control system design method selection and 4. experimental testing.
Technical Paper

Effects of Turbulence on Spark-Ignition Engine Combustion

1976-02-01
760160
The effects of mixture turbulence on combustion in a spark-ignition engine were investigated using a CFR engine. The apparent instantaneous turbulent flame speed during combustion was calculated from a combustion heat release model that used measured cylinder pressures and assumed spherical flame propagation. This flame speed was correlated with turbulent intensities measured in the motored engine. The ratio of fully developed turbulent flame speed to laminar flame speed was found to be a linear function of motored turbulent intensity.
Technical Paper

Modelling of Corrosion of Cylinder Liner in Diesel Engines Caused by Sulphur in the Diesel Fuel

1994-03-01
940818
Due to increasing problems with corrosive wear in marine Diesel Engines, caused by sulphuric acid, it is necessary to understand the mechanism of corrosion. Based on experience with large marine diesel engine operation, a mechanism model is proposed and verified by comparison with practical experience. From operation of engines it is known that the corrosion problem is most severe where the lubrication of the liner is most unsatisfactory. Therefore, most effort is put into modelling the formation and transportation of acid in the lubricant film area. Results from modelling the risk of corrosion during different engine operation conditions are presented.
Technical Paper

Modelling of the Intake Manifold Filling Dynamics

1996-02-01
960037
Mean Value Engine Models (MVEMs) are dynamic models which describe dynamic engine variable (or state) responses as mean rather than instantaneous values on time scales slightly longer than an engine event. Such engine variables are the independent variables in nonlinear differential (or state) equations which can be quite compact but nevertheless quite accurate. One of the most important of the differential equations for a spark ignition (SI) engine is the intake manifold filling (often manifold pressure) state equation. This equation is commonly used to estimate the air mass flow to an SI engine during fast throttle angle transients to insure proper engine fueling. The purpose of this paper is to derive a modified manifold pressure state equation which is simpler and more physical than those currently found in the literature. This new formulation makes it easier to calibrate a MVEM for different engines and provides new insights into dynamic SI engine operation.
Technical Paper

Nonlinear Transient Fuel Film Compensation (NTFC)

1993-03-01
930767
A very important component of an accurate steady state and transient air/fuel (A/F) ratio control strategy is the transient fuel compensation (TFC) substrategy. This is the part of an engine control algorithm which cancels the fuel film dynamics and makes it possible to place injected fuel into the intake manifold (or close to the intake ports or valves) of a spark ignition (SI) engine at the correct time and location. This paper presents the results of a very large series of experiments conducted with the same engine with either a throttle body (TBI) (or central fuel injection (CFI)) manifold or with a multi-point port injection (MPI) (or electronic fuel injection (EFI)) manifold. These experiments have shown that in some practical applications it may be necessary to model the intake manifold as a two time constant dynamic system rather than as a single differential equation system.
Technical Paper

Nonlinear, Closed Loop, SI Engine Control Observers

1992-02-01
920237
Conventional electronic engine control systems suffer from poor transient air/fuel ratio control accuracy. This is true of speed-throttle, speed-density, and mass air flow (MAF) control systems with either single point (or central) or port fuel injection. The reason for this is that they fail to 1. compensate for the nonlinear dynamics of the fuel film in the intake manifold or in the vicinity of the intake valves. 2. estimate correctly the air mass flow at the location of the injector(s). This paper presents a nonlinear fuel film compensation network and a nonlinear closed loop observer. The nonlinear fuel film compensator gives improved global cancellation of the fuel film dynamics, while the closed loop observer has improved robustness with respect to modelling error and measurement noise. The closed loop observer is based on a modified constant gain extended Kalman filter.
Technical Paper

On the Validity of Mean Value Engine Models During Transient Operation

2000-03-06
2000-01-1261
Because there are no production-type sensors which are able to measure the flow directly at the intake port, it is becoming common practice to use models of varying complexity to infer the port air mass flow from other measurements. Given the tight requirements of modern air/fuel ratio (AFR) control strategies, the accuracy of these models needs to be better than ever, during steady-state of course (though λ feedback strategies are by design very robust), but mainly during transient operation. This paper describes why conventional models might be inaccurate during engine transients.
Technical Paper

Optimizing the Performance of a 50cc Compression Ignition Two-Stroke Engine Operating on Dimethyl Ether

2011-04-12
2011-01-0144
The paper describes the optimization of a 50 cc crankcase scavenged two-stroke diesel engine operating on dimethyl ether (DME). The optimization is primarily done with respect to engine efficiency. The underlying idea behind the work is that the low weight, low internal friction and low engine-out NOx of such an engine could make it ideal for future vehicles operating on second-generation biofuels. Data is presented for the performance and emissions at the current state of development of the engine. Brake efficiencies above 30% were obtained despite the small size of the engine. In addition, efficiencies near the maximum were found over a wide operating range of speeds and loads. Maximum bmep is 500 kPa. Results are shown for engine speeds ranging from 2000 to 5000 rpm and loads from idle to full load. At all speeds and loads NOx emissions are below 200 ppm and smokeless operation is achieved. Design improvements relative to an earlier prototype are described.
Technical Paper

Robust, Self-Calibrating Lambda Feedback for Sl Engines

1993-03-01
930860
An important element in nearly all engine control systems is the lambda control feedback system and its associated switching exhaust gas oxygen sensor (EGO). This feedback loop is necessary to keep the mean value of the normalized air/fuel ratio close to one. This is a necessary condition for proper operation of the three-way catalyst systems which are a part of nearly all production emissions control systems. Currently many systems are based on using classical proportional-integral (PI) controllers in lambda control feedback loops which are self-oscillating. Proper design of such systems is dependent on knowing the time delay between the injection time and the time when a corresponding signal appears at the engine exhaust EGO sensor. Recently a new method of designing the vital larnbda control loop has emerged which is claimed to be very robust with respect to the injection/exhaust time delay.
Technical Paper

SI Engine Controls and Mean Value Engine Modelling

1991-02-01
910258
Many existing classical electronic control systems (speed-throttle, speed-density, MAF (mass air flow)) are based on quasistatic engine models and static measured engine maps. They are thus time consuming to adapt to new engine types, are sensitive to dynamic sensor errors and in general have undesirable dynamic characteristics. One of the main reasons for the characteristics of these strategies has been the lack of a precise, systems oriented, equation based, dynamic engine model. Recently a compact dynamic mean value engine model (MVEM) has been presented by the authors which displays good global accuracy. A mean value model is one which predicts the mean value of the gross internal and external engine variables. This paper shows how the engine model can be applied to the systematic design and analysis of classical electronic engine control systems. One of the main aims of the paper is to eliminate the use of cut and try methods in designing dynamic engine controls.
Technical Paper

Transient A/F Ratio Errors in Conventional SI Engine Controllers

1993-03-01
930856
In an earlier paper one of the authors of this paper (E. Hendricks and co-authors) treated the question of obtaining correct steady state and transient control of the air/fuel (A/F) ratio of an SI engine. This study was based in part on simulations conducted with a dynamic engine model developed earlier and in part on experimental results. The main conclusions were that conventional control strategies (Speed-Throttle, Speed-Density and Mass Air Flow (MAF)) cannot give proper A/F control because of 1. sensor and anti-aliasing filter time constants and 2. improper or lacking compensation for manifold fuel film and (air) filling dynamics. In this paper, the results of a long series of experiments conducted with the control systems above are to be presented. Both central fuel injection (CFI) (or throttle body (TBI)) and electronic fuel injection (EFI) (or multipoint (MPI)) manifolds have been investigated.
X