Refine Your Search

Topic

Author

Search Results

Technical Paper

A Modified Cetane Scale for Low Ignition Quality Fuels

1978-02-01
780640
A detailed analysis has been made on the Cetane Scale presently used to rate the autoignition quality of fuels. The effect of the increase in temperature and pressure, as a result of increasing the compression ratio, on the ignition delay has been theoretically and experimentally analyzed. It has been found that the ignition delay is more sensitive to air temperature than air pressure. The sensitivity increases with the drop in the cetane number of the fuel. Many techniques have been examined to modify the present cetane scale. A modified scale has been developed by raising the inlet temperature from 150°F to 350°F without changing the rest of the rating technique. The modified scale is very effective in extending the scale to zero cetane number and is able to rate the low ignition quality fuels.
Technical Paper

Adiabatic Engine Trends-Worldwide

1987-02-01
870018
Since the early inception of the adiabatic diesel engine in 1974, marked progress has taken place as a result of research efforts performed all over the world. The use of ceramics for heat engines in production applications has been limited to date, but is growing. Ceramic use for production heat engine has included: combustion prechambers, turbochargers, exhaust port liners, top piston ring inserts, glow plugs, oxygen sensors; and additional high temperature friction and wear components. The potential advantages of an adiabatic engine vary greatly with specific application (i.e., commercial vs. military, stationary vs. vehicular, etc.), and thus, a better understanding of the strengths and weaknesses (and associated risks) of advanced adiabatic concepts with respect to materials, tribology, cost, and payoff must be obtained.
Technical Paper

Advanced Low Temperature Combustion (ALTC): Diesel Engine Performance, Fuel Economy and Emissions

2008-04-14
2008-01-0652
The objective of this work is to develop a strategy to reduce the penalties in the diesel engine performance, fuel economy and HC and CO emissions, associated with the operation in the low temperature combustion regime. Experiments were conducted on a research high speed, single cylinder, 4-valve, small-bore direct injection diesel engine equipped with a common rail injection system under simulated turbocharged conditions, at IMEP = 3 bar and engine speed = 1500 rpm. EGR rates were varied over a wide range to cover engine operation from the conventional to the LTC regime, up to the misfiring point. The injection pressure was varied from 600 bar to 1200 bar. Injection timing was adjusted to cover three different LPPCs (Location of the Peak rate of heat release due to the Premixed Combustion fraction) at 10.5° aTDC, 5 aTDC and 2 aTDC. The swirl ratio was varied from 1.44 to 7.12. Four steps are taken to move from LTC to ALTC.
Technical Paper

Advancements in High Temperature Cylinder Liner and Piston Ring Tribology

2000-03-06
2000-01-1237
The high temperature tribology issue for uncooled Low Heat Rejection (LHR) diesel engines where the cylinder liner piston ring interface exceeds temperatures of 225°C to 250°C has existed for decades. It is a problem that has persistently prohibited advances in non-watercooled LHR engine development. Though the problem is not specific to non-watercooled LHR diesel engines, it is the topic of this research study for the past two and one half years. In the late 1970s and throughout the 1980s, a tremendous amount of research had been placed upon the development of the LHR diesel engine. LHR engine finite element design and cycle simulation models had been generated. Many of these projected the cylinder liner piston ring top ring reversal (TRR) temperature to exceed 540°C[1]. In order for the LHR diesel to succeed, a tribological solution for these high TRR temperatures had to be developed.
Technical Paper

An Analysis of Regulated and Unregulated Emissions in an HSDI Diesel Engine under the LTC Regime

2007-04-16
2007-01-0905
Several mechanisms are discussed to understand the formation of both regulated and unregulated emissions in a high speed, direct injection, single cylinder diesel engine using low sulphur diesel fuel. Experiments were conducted over a wide range of injection pressures, EGR rates, injection timings and swirl ratios. The regulated emissions were measured by the standard emission equipment. Unregulated emissions such as aldehydes and ketones were measured by high pressure liquid chromatography and hydrocarbon speciation by gas chromatography. Particulate mass was measured with a Tapered Element Oscillating Microbalance (TEOM). Analysis was made of the sources of different emission species and their relationship with the combustion process under the different operating conditions. Special attention is given to the low temperature combustion (LTC) regime which is known to reduce both NOx and soot. However the HC, CO and unregulated emissions increased at a higher rate.
Technical Paper

Cetane Scale: Function, Problems and Possible Solutions

1987-02-01
870584
This paper identifies the original function of the Cetane Scale and examines some problem of concern to the technical community. The following six problems have been analyzed: i) inability of the ASTM D-613 method to rate low ignition quality fuels, ii) instability of the ignition delay meter, iii) inconformity of the CFR combustion system with actual diesel systems, iv) invalidity of Cetane number in correlating the I.D. for different fuels, engines and operating conditions, v) inaccuracy of Cetane number in ranking the overall performance and emission behaviour of fuels in diesel engines and vi) inability of Cetane number in rating the cold startability of diesel engines on different fuels. Possible solutions to the above problems have been examined.
Technical Paper

Closed Loop Control Using Ion Current Signal in a Diesel Engine

2012-04-01
2011-01-2433
Signals indicative of in-cylinder combustion have been under investigation for the control of diesel engines to meet stringent emission standards and other production targets in performance and fuel economy. This paper presents the results of an investigation on the use of the ion current signal for the close loop control of a heavy duty four cylinder turbocharged diesel engine equipped with a common rail injection system. A correlation is developed between the start of ion current signal (SIC) and the location of the peak of premixed combustion (LPPC) in the rate of heat release trace. Based on this correlation, a PID closed loop controller is developed to adjust the injection timing for proper combustion phasing under steady and transient engine operating conditions.
Technical Paper

Coatings for Improving Engine Performance

1997-02-24
970204
Thermal barrier coatings are becoming increasingly important in providing thermal insulation for heat engine components. Thermal insulation reduces in-cylinder heat transfer from the engine combustion chamber as well as reducing component structural temperatures. Containment of heat also contributes to increased in-cylinder work and offers higher exhaust temperatures for energy recovery. Lower component structural temperatures will result in greater durability. Advanced ceramic composite coatings also offer the unique properties that can provide reductions in friction and wear. Test results and analysis to evaluate the performance benefits of thin thermal barrier coated components in a single cylinder diesel engine are presented.
Technical Paper

Combat Vehicle Engine Selection Methodology Based On Vehicle Integration Considerations

2005-04-11
2005-01-1545
Past experience has shown that the power density of an engine itself is not a sufficient guide to determine whether it will meet the power density needs of the intended combat vehicle application. The real need is for the complete propulsion system to be power dense. Here the definition of the propulsion system includes the engine, transmission, cooling system, air filtration system, intake and exhaust ducting, controls, accessories, batteries, fuel system and final drives. The power pack is a subset of the propulsion system and consists of that part of the propulsion system that would be lifted out of the vehicle for service or replacement and would typically consist of at least the engine, and transmission, cooling system, and power pack controls and ideally would also include the air filtration system and accessory drives. Engine operating characteristics will directly impact power density for some propulsion system items.
Technical Paper

Combustion Visualization of DI Diesel Spray Combustion inside a Small-Bore Cylinder under different EGR and Swirl Ratios

2001-05-07
2001-01-2005
An experimental setup using rapid compression machine to provide excellent optical access to visualize simulated high-speed small-bore direct injection diesel engine combustion processes is described. Typical combustion visualization results of diesel spray combustion under different EGR, swirl, and injection pressure and nozzle conditions are presented. Different swirl intensities are achieved using an air nozzle with variable orientations and a check valve to connect the compression chamber and the combustion chamber. Different EGR ratios are achieved by pre-injection of diesel fuel prior to the main observation sequence. Clear visualization of the high-pressure fuel injection, ignition, combustion and spray/wall/swirl interactions is obtained. The injection system is a high-pressure common-rail system with either a VCO or a mini-sac nozzle. High-speed movies up to 35,000 frame-per-second are taken using a framing drum camera to record the combustion events.
Technical Paper

Combustion and Performance Characteristics of a Low Heat Rejection Engine

1993-03-01
930988
The purpose of this paper is to investigate combustion and performance characteristics for an advanced class of diesel engines which support future Army ground propulsion requirements of improved thermal efficiency, reduced system size and weight, and enhanced mobility. Advanced ground vehicle engine research represents a critical building block for future Army vehicles. Unique technology driven engines are essential to the development of compact, high-power density ground propulsion systems. Through an in-house analysis of technical opportunities in the vehicle ground propulsion area, a number of dramatic payoffs have been identified as being achievable. These payoffs require significant advances in various areas such as: optimized combustion, heat release phasing, and fluid flow/fuel spray interaction. These areas have been analyzed in a fundamental manner relative to conventional and low heat rejection “adiabatic” engines.
Technical Paper

Comparative Analysis of Stirling and Other Combustion Engines

1973-02-01
730620
The development of the Stirling engine has recently gained momentum because of technological advances as well as the need to explore alternative power systems for meeting environmental concerns. An overview of the Stirling engine principles, taking into account the ideal as well as the actual cycle, is presented. The analysis examines the various design aspects and the performance and emission characteristics. A comparison is made between the Stirling and other continuous and cyclic combustion engines, such as the gasoline, diesel, gas turbine, and steam engines. This includes recent designs for the Rankine cycle and gas turbine combustors being considered for automotive applications.
Technical Paper

Comparison between Combustion, Performance and Emission Characteristics of JP-8 and Ultra Low Sulfur Diesel Fuel in a Single Cylinder Diesel Engine

2010-04-12
2010-01-1123
JP-8 is an aviation turbine engine fuel recently introduced for use in military ground vehicle applications and generators which are mostly powered by diesel engines. Many of these engines are designed and developed for commercial use and need to be adapted for military applications. This requires more understanding of the auto- ignition and combustion characteristics of JP-8 under different engine operating conditions. This paper presents the results of a comparative analysis of an engine operation using JP-8 and ultra low sulfur diesel fuel (ULSD). Experiments were conducted on 0.42 liter single cylinder, high speed direct injection (HSDI) diesel engine equipped with a common rail injection system. The results indicate that the distillation properties of fuel have an effect on its vaporization rate. JP-8 evaporated faster and had shorter ignition delay as compared to ULSD. The fuel economy with JP-8 was better than ULSD.
Technical Paper

Correlation between Physical Properties and Autoignition Parameters of Alternate Fuels

1985-02-01
850266
The correlations between the physical properties and autoignition parameters of several alternate fuels have been examined. The fuels are DF-2 and its blends with petroleum derived fuels, coal derived fuels, shale derived fuels, high aromatic naphtha sun-flower oils, methanol and ethanol. A total of eighteen existing correlations are discussed. An emphasis is made on the suitability of each of the correlations for the development of electronic controls for diesel engines when run on alternate fuels. A new correlation has been developed between the cetane number of the fuels and its kinematic viscosity and specific gravity.
Technical Paper

Cycle-To-Cycle Variation with Low Ignition Quality Fuels in a CFR Diesel Engine

1979-02-01
790924
Cycle-to-cycle cylinder pressure variation has been observed in a CFR prechamber diesel engine when low ignition quality (low cetane number) fuels are burned. A statistical analysis of this phenomenon for various fuels and blends with cetane numbers as low as zero has been made. Operating conditions used were those specified by the ASTM Cetane Method for rating diesel fuels, in which the inlet air temperature is 150°F. Additional analysis was made at increased inlet air temperatures of 250°F and 350°F. The cycle-to-cycle variation has been characterized by the variation in the ignition (or pressure rise) delay time. It has been found to increase sharply as fuel cetane number is decreased below 20. The variation in dynamic injection timing was also measured and correlated with that for ignition delay.
Technical Paper

DIRECT UTILIZATION OF CRUDE OIL AS A FUEL FOR HIGH-SPEED DIESEL ENGINES

1975-02-01
750762
Crude oils with a wide range of properties were investigated for direct use as fuel in U. S. Army high-speed four-cycle diesel engines. Crude oil properties were divided into two groups; 1. those properties which would be of importance for short-term operational effects, and 2. those properties whose effects would manifest during longer-term operation. Effects of crude oil use on engine subsystem hardware such as fuel filters and fuel injection pumps were investigated. Performance and combustion data were determined using pre-cup and direct injection configurations of the single cylinder CLR diesel engine operating on various crude oils. Performance data, wear and deposition effects of crude oil use were obtained using the TACOM single cylinder diesel engine. Results of this investigation showed that a wide range of crude oils with proper selection and pretreatment are feasible emergency energy sources for U. S. Army four-cycle high-speed diesel engines.
Technical Paper

Development of Advanced High-Temperature Liquid Lubricants

1988-02-01
880015
Future U.S. Army low heat rejection (LHR) diesel engines will operate with oil sump temperatures higher than 350°F and cylinder wall temperatures (at the top ring reversal position) which may reach 1100°F. None of the synthetic lubricants which have previously been evaluated in LHR engine prototypes are able to function for long in such a severe thermal/oxidative environment. Work is being performed for the U.S. Army on development and evaluation of new high temperature diesel engine lubricants. The most significant result of this work has been the development of a low cost liquid lubricant which exhibits high temperature performance superior to the best previously developed LHR engine lubricant in all respects: deposit-forming tendencies, stable life under high temperature oxidative conditions, and friction and wear properties.
Technical Paper

Diesel Cold Starting: Actual Cycle Analysis Under Border-Line Conditions

1990-02-01
900441
Combustion in a diesel engine during cold starting under normal and border-line conditions was investigated. Experiments were conducted on a single cylinder, air-cooled, 4-stroke-cycle engine in a cold room. Tests covered different fuels, injection timings and ambient temperatures. Motoring tests, without fuel injection indicated that the compression pressure and temperature are dependent on the ambient temperature and cranking speeds. The tests with JP-5, with a static injection timing of 23° BTDC indicated that the engine may operate on the regular 4-stroke-cycle at normal operating ambient temperatures or may skip one cycle before each firing at moderately low temperatures, i.e. operate on an 8-stroke-cycle mode. At lower temperatures the engine may skip two cycles before each firing cycle, i.e. operate on a 12-stroke-cycle mode. These modes were reproducible and were found to depend mainly on the ambient temperature.
Technical Paper

Diesel Cold-Starting Study Using Optically Accessible Engines

1995-10-01
952366
An experimental and numerical study was carried out to simulate the diesel spray behavior during cold starting conditions inside two single-cylinder optically accessible engines. One is an AVL single-cylinder research diesel engine converted for optical access; the other is a TACOM/LABECO engine retrofitted with mirror-coupled endoscope access. The first engine is suitable for sophisticated optical diagnostics but is constrained to limited consecutive fuel injections or firings. The second one is located inside a micro-processor controlled cold room; therefore it can be operated under a wide range of practical engine conditions and is ideal for cycle-to-cycle variation study. The intake and blow-by flow rates are carefully measured in order to clearly define the operation condition. In addition to cylinder pressure measurement, the experiment used 16-mm high-speed movie photography to directly visualize the global structures of the sprays and ignition process.
Technical Paper

Dynamics of Multiple-Injection Fuel Sprays in a Small-bore HSDI Diesel Engine

2000-03-06
2000-01-1256
An experimental study was conducted to characterize the dynamics and spray behavior of a wide range of minisac and Valve-Covered-Orifice (VCO) nozzles using a high-pressure diesel common-rail system. The measurements show that the resultant injection-rate is strongly dependent on common-rail pressure, nozzle hole diameter, and nozzle type. For split injection the dwell between injections strongly affects the second injection in regards to the needle lift profile and the injected fuel amount. The minisac nozzle can be used to achieve shorter pilot injections at lower common-rail pressures than the VCO nozzle. Penetration photographs of spray development in a high pressure, optical spray chamber were obtained and analyzed for each test condition. Spray symmetry and spray structure were found to depend significantly on the nozzle type.
X