Refine Your Search

Search Results

Technical Paper

1D Modeling of Alternative Fuels Spray in a Compression Ignition Engine Using Injection Rate Shaping Strategy

2019-09-09
2019-24-0132
The Injection Rate Shaping consists in a novel injection strategy to control air-fuel mixing quality via a suitable variation of injection timing that affects the injection rate profile. This strategy has already provided to be useful to increase combustion efficiency and reduce pollutant emissions in the modern compression ignition engines fed with fossil Diesel fuel. But nowadays, the ever more rigorous emission targets are enhancing a search for alternative fuels and/or new blends to replace conventional ones, leading, in turn, a change in the air-fuel mixture formation. In this work, a 1D model of spray injection aims to investigate the combined effects of both Injection Rate Shaping and alternative fuels on the air-fuel mixture formation in a compression ignition engine. In a first step, a ready-made model for conventional injection strategies has been set up for the Injection Rate Shaping.
Journal Article

Alternative Diesel Fuels Effects on Combustion and Emissions of an Euro4 Automotive Diesel Engine

2009-09-13
2009-24-0088
The present paper describes the first results of a cooperative research project between GM Powertrain Europe and Istituto Motori of CNR aimed at studying the impact of Fatty-Acid Methyl Esters (FAME) and gas-to-liquid (GTL) fuel blends on the performance, emissions and fuel consumption of modern automotive diesel engines. The tests were performed on the architecture of GM 1.9L Euro4 diesel engine for passenger car application, both on optical single-cylinder and on production four-cylinder engines, sharing the same combustion system configuration. Various blends of biodiesels as well as reference diesel fuel were tested. The experimental activity on the single-cylinder engine was devoted to an in-depth investigation of the combustion process and pollutant formation, by means of different optical diagnostics techniques, based on imaging multiwavelength spectroscopy.
Technical Paper

An Experimental Characterization of Gasoline/Ozone/Air Mixtures in Spark Ignition Engines

2023-08-28
2023-24-0039
In this work, an ozone/air/gasoline mixture has been used as an alternative strategy to achieve a stable combustion in a spark ignition (SI) single cylinder PFI research engine. The air intake manifold has been modified to include four cells to produce ozone with different concentrations. In the research engine, various operating parameters have been monitored such as the in-cylinder pressure, temperature and composition of the exhaust gases, pressure and temperature of the mixture in the intake manifold, engine power and torque and specific fuel consumption. Experimental tests have been carried out under stoichiometric mixture conditions to observe the influence of ozone addition on the combustion process. The results show an advance and an increase of the in-cylinder pressure compared to the reference test-case, where a gasoline/air mixture is used. It is worth noting that, especially under stoichiometric condition, ozone concentration induces auto-ignition and knock.
Technical Paper

Analysis of Dual Fuel Combustion in Single Cylinder Research Engine Fueled with Methane and Diesel by IR Diagnostics

2019-04-02
2019-01-1165
In the present study, dual fuel mode is investigated in a single cylinder optical compression ignition (CI) research engine. Methane is injected in the intake manifold while the diesel is delivered via the standard injector directly into the engine. The aim is to study by non-intrusive diagnostics the effect of increasing methane concentration at constant injected diesel amount during the combustion evolution from start of combustion. IR imaging is applied in cycle resolved mode. Three filters are adopted to detect from injection to combustion phase with high spatial and temporal resolution: OD1.45 (3-5.5 μm), band pass 3.3 μm (hydrocarbons) and band pass 4.2 μm (CO2). Using the band pass IR imaging qualitative information about fuel-vapor distribution and ignition locations during low and high temperature combustion have been provided.
Technical Paper

Analysis of Dual Fuel Hydrogen/Diesel Combustion Varying Diesel and Hydrogen Injection Parameters in a Single Cylinder Research Engine

2024-04-09
2024-01-2363
In the perspective of a reduction of emissions and a rapid decarbonisation, especially for compression ignition engines, hydrogen plays a decisive role. The dual fuel technology is perfectly suited to the use of hydrogen, a fuel characterized by great energy potential. In fact, replacing, at the same energy content, the fossil fuel with a totally carbon free one, a significant reduction of the greenhouse gases, like carbon dioxide and total hydrocarbon, as well as of the particulate matter can be obtained. The dual fuel with indirect injection of gaseous fuel in the intake manifold, involves the problem of hydrogen autoignition. In order to avoid this difficulty, the optimal conditions for the injection of the incoming mixture into the cylinder were experimentally investigated. All combustion processes are carried out on a research engine with optical access. The engine speed has is set at 1500 rpm, while the EGR valve is deactivated.
Technical Paper

CFD Analysis of Different Methane/Hydrogen Blends in a CI Engine Operating in Dual Fuel Mode

2022-08-30
2022-01-1056
Nowadays, the stricter regulations in terms of emissions have limited the use of diesel engines on urban roads. On the contrary, for marine and off-road applications the diesel engine still represents the most feasible solution for work production. In the last decades, dual fuel operation with methane supply has been widely investigated. Starting from previous studies on a research engine, where diesel-methane dual fuel combustion has been deepened both experimentally and numerically with the aid of a CFD code, the authors implemented and tested a kinetic mechanism. It is obtained from the combination of the well-established GRIMECH 3.0 and a detailed scheme for a diesel surrogate oxidation. Moreover, the Autoignition-Induced Flame Propagation model, included in the ANSYS Forte® software, is applied because it can be considered the most appropriate model to describe dual fuel combustion.
Technical Paper

CFD Analysis of the Combustion Process in Dual-Fuel Diesel Engine

2018-04-03
2018-01-0257
Dual-fuel technology has the potential to offer significant improvements in the emissions of carbon dioxide from light-duty compression ignition engines. The dual-fuel (diesel/natural gas) concept represents a possible solution to reduce emissions from diesel engines by using natural gas (methane) as an alternative fuel. Methane was injected in the intake manifold while the diesel oil was injected directly into the engine. The present work describes the results of a numerical study on combustion process of a common rail diesel engine supplied with natural gas and diesel oil. In particular, the aim is to study the effect of increasing methane concentration at constant injected diesel amount on both pollutant emissions and combustion evolution. The study of dual-fuel engines that is carried out in this paper aims at the evaluation of the CFD potential, by a 3-dimensional code, to predict the main features of this technology.
Technical Paper

CFD Analysis of the Injection Strategy of a Dual Fuel Compression Ignition Engine Supplied with Hydrogen

2023-08-28
2023-24-0064
Although in the latest years the use of compression ignition engines has been a thread of discussion in the automotive field, it is possible to affirm that it still will be a fundamental producer of mechanical power in other sectors, such as naval and off-road applications. However, the necessity of reducing emissions requires to keep on studying new solutions for this kind of engine. Dual fuel combustion concept with methane has demonstrated to be effective in preserving the performance of the original engine and reducing soot, but issues related to the low flame speed forced researcher to find an alternative fuel at low impact of CO2. Hydrogen, thanks to its chemical and physical properties, can be a perfect candidate to ensure a good level of combustion efficiency; however, this is possible only with a proper management of the in-cylinder mixture ignition by means of a pilot injection, preventing uncontrolled autoignition events as well.
Technical Paper

Characterization of Combustion and Emissions in Light-Duty Diesel Engines Using High-Glycerol-Ethers/Diesel Blends

2015-09-06
2015-24-2445
In this paper, a detailed analysis of combustion and emissions is carried out on both metal and optical light duty diesel engines equipped with up-to-date combustion architecture. Both engines were fed with glycerol ethers mixture (GEM) in blend (10% and 20% v/v) within a commercial diesel fuel. The engines ran in significant operating points in the NEDC (New European Driving Cycle) emission homologation area. The results of the experimental campaign on the metal engine show comparable performances between the diesel/GEM blends and the diesel fuel and demonstrate benefits mainly in terms of soot production. The exhaust particles diameters of diesel/GEM blends shift toward smaller dimensions and the total number decreases. Moreover, at lower load conditions, the outputs show a worsening of the unburnt mainly ascribable to the fuel characteristics.
Technical Paper

Characterization of PCCI Combustion in a Single Cylinder CI Engine Fuelled with RME and Bio-Ethanol

2013-04-08
2013-01-1672
This paper reports experiments on a single-cylinder direct-injection compression ignition engine operating in premixed charge compression ignition (PCCI) combustion mode. The engine was fuelled with pure rapeseed methyl ester (RME) and bio-ethanol. RME was injected in the combustion chamber by common rail (CR) injection system at 800 bar and bio-ethanol in the intake manifold by commercial port fuel injection system at 3.5 bar. The effects of different percentage of bio-ethanol were studied by means of both the in-cylinder heat release analysis and the high-speed UV-visible chemiluminescence visualization. The pollutant formation and exhaust emissions of the engine operating in dual fuel mode were evaluated. The increase of the bio-ethanol content improved the brake thermal efficiency slightly even if the brake fuel consumption increased. However, the choice to inject two biofuels decreases both the smoke opacity and NOx concentration.
Technical Paper

Chemical and Physical Characteristics of Organic Particulate Matter from Exhaust After-Treatment System of Euro 6 Diesel Engine Operating at Full Load

2019-09-09
2019-24-0053
The current legislation does not take into account the limitation of sub 23 nm particles from engine. Nevertheless, the Common Rail Diesel engine emits a large number of nanoparticle, solid and volatiles, that are very dangerous for human health. In this contest, the challenge of the “dieper EU project” is to apply advanced technologies for exhaust after-treatment to existing diesel engines and to optimize the characteristics of a new generation of engines with regards to emissions, fuel consumption and drivability. Aim of the present paper is to provide useful information for the development of the after-treatment system that will have to fulfill Euro6 further steps. In order to characterize the chemical and physical nature of Particulate Matter emitted from Euro 6b Medium Duty diesel engine, the pollutants were collected and analyzed: from engine-out, downstream of the particulate filter (DPF), and at the exit of a selective catalytic reactor (SCR).
Technical Paper

Coking Effect of Different FN Nozzles on Injection and Combustion in an Optically Accessible Diesel Engine

2013-09-08
2013-24-0039
Interest on the issue of diesel injector nozzle deposits is rising in the last years due to its effects on engine performance. The alteration of nozzles geometry can cause a difference in fuel mass flow and influence smoke emission. Investigation on the effects of nozzle coking in a diesel injector has been the topic of this paper. The experiments have been carried out in a single cylinder optical engine operating in premixed mode. The head of a Euro 5 production engine has been mounted on an elongated cylinder and the production CR injection system has been used. A sapphire window has been set in the piston head in order to have visible access to phenomena occurring in the combustion chamber. Three injectors with decreasing flow number (FN) have been tested. Engine has been fed with commercial diesel fuel. High spatial and temporal resolution camera has been used for the acquisition of in-cylinder injection and combustion images.
Technical Paper

Combustion Analysis in an Optical Diesel Engine Operating with Low Compression Ratio and Biodiesel Fuels

2010-04-12
2010-01-0865
In this paper we report how optical techniques were applied in the cylinder of an optically accessible engine equipped with latest-generation EURO V diesel engine head. The injection strategy with high percentage of EGR, characteristic of real engine operating point, was adopted. In particular, the combustion behavior at 1500 rpm\2 bar BMEP was investigated. Alternative diesel fuels were used. In particular, rapeseed methyl ester (RME) and gas to liquid (GTL) were selected as representative of 1st and 2nd generation alternative diesel fuel, respectively. Combustion analysis was carried out in the engine combustion chamber by means of visible digital imaging. These measurements helped to analyze the chemical and physical events occurring during the mixture preparation and the combustion development. Ultraviolet (UV) digital imaging was also performed and the presence of characteristic radical, like OH, in the various phases of combustion was detected as well.
Technical Paper

Combustion Analysis of Dual Fuel Operation in Single Cylinder Research Engine Fuelled with Methane and Diesel

2015-09-06
2015-24-2461
In the present activity, dual fuel operation was investigated in a single cylinder research engine. Methane was injected in the intake manifold while the diesel was delivered via the standard injector directly into the engine. The aim is to study the effect of increasing methane concentration at constant injected diesel amount on both pollutant emissions and combustion evolution in an optically accessible engine. Emissions are in line with those previously published by other authors, it is noted no PM and constant NOx emissions. Moreover, a decrease of the brake specific CO emissions and an increase of the brake specific THC for the operating condition with the highest premixed ratio was detected. THC was mainly constituted by methane unburned hydrocarbons. Combustion resulted more or less stable. Moreover, via both UV-VIS spectroscopy and digital imaging, the spatial distribution of several species involved in the combustion process was analyzed.
Technical Paper

Effect of Diesel/RME Blend on Particle Emissions from a Diesel Engine for Quadricycle Vehicle

2014-04-01
2014-01-1602
This paper deals with the combustion characteristics and exhaust emissions of a diesel engine fuelled with conventional diesel fuel and a biodiesel blend, in particular a 20% v/v concentration of rapeseed methyl ester (RME) mixed with diesel fuel. The investigation was carried out on a prototype three-cylinder engine with 1000 cc of displacement for quadricycle applications. The engine is equipped with a direct common-rail injection system that reaches a maximum pressure of 1400 bar. The engine was designed to comply with Euro 4 and BS IV exhaust emission regulations without a diesel particulate filter. Both in-cylinder pressure and rate of heat release traces were analyzed at different engine speeds and loads. Gaseous emissions were measured at the exhaust. A smoke meter was used to measure the particulate matter concentration. The sizing and the counting of the particles were performed by means of an engine exhaust particle sizer spectrometer.
Technical Paper

Endoscopic Investigation of Combustion Process in a Small Compression Ignition Engine Fuelled with Rapeseed Methyl Ester

2014-10-13
2014-01-2649
The aim of this study is to investigate the combustion process and pollutant formation in a small compression ignition engine. The engine is a prototype for quadricycles. It was designed to comply with Euro 4 emission standard that is a future regulation for this type of vehicles. Two optical accesses for endoscopes were realized in the first cylinder to investigate the combustion process. Two-color pyrometry method was applied to combustion images in order to detect the flame temperature and the soot concentration. The engine ran with a biodiesel, the rapeseed methyl ester, and a conventional diesel fuel. Operating conditions at the engine speed of 2000 rpm at full and medium load were tested. NOx emissions were measured at exhaust. A smoke meter was used to determine the particulate matter concentration. The sizing and the counting of the particles were performed by means of an engine exhaust particle sizer spectrometer.
Technical Paper

Engine Performance and Emissions of a Small Diesel Engine Fueled with Various Diesel/RME Blends

2014-11-11
2014-32-0135
The present paper describes the results of an experimental activity performed on a small diesel engine for quadricycles, a category of vehicles that is spreading in Europe and is recently spreading over Indian countries. The engine is a prototype three-cylinder with 1000 cc of displacement and it is equipped with a direct common-rail injection system that reaches a maximum pressure of 1400 bar. The engine was designed to comply with Euro 4 emission standard that is a future regulation for quadricycles. It is worth underlining that the engine can meet emission limits just with EGR system and a DOC, without DPF. Various diesel/RME blends were tested; pure diesel and biodiesel fuels were also used. The investigation was carried out at the engine speeds of 1400, 2000 and 3400 rpm and full load. Combustion characteristics of both blended and pure RME were analyzed by means of in-cylinder pressure and heat released histories.
Technical Paper

Extinction and Chemiluminescence Measurements of HCCI Mode in Diesel Engine Operating with Late Injection

2008-04-14
2008-01-0027
Nowadays HCCI combustion process is revealing the most useful technique for reducing pollutant emission from internal combustion engines. In the present paper, HCCI combustion was realized by means of single late injection at high pressure and heavy EGR, up to 50%. A transparent Direct Injection (DI) diesel engine equipped with high pressure Common Rail (CR) injection system was used. The engine was fed with commercial diesel fuel and ran in continuous mode. Digital imaging and spectroscopic techniques, with high temporal and spatial resolution, were applied to study the low temperature combustion process. Injection and combustion phases were analysed by digital imaging. Mixing process, autoignition and pollutants formation were investigated by Broadband Ultraviolet - Visible Extinction Spectroscopy (BUVES) and flame emission measurements. Radicals and species such as OH, CH and CO were detected in the combustion chamber.
Journal Article

Hydrogen/Diesel Combustion Analysis in a Single Cylinder Research Engine

2022-09-16
2022-24-0012
The application of an alternative fuel such as hydrogen to internal combustion engines is proving to be an effective and flexible solution for reducing fuel consumption and polluting emissions from engines. An easy to use and immediate application solution is the dual fuel (DF) technology. It has the potential to offer significant improvements in carbon dioxide emissions from light compression ignition engines. The dual fuel concept (natural gas / diesel or hydrogen / diesel) represents a possible solution to reduce emissions from diesel engines by using low-carbon or carbon-free gaseous fuels as an alternative fuel. Moreover, DF combustion is a possible retrofit solution to current diesel engines by installing a PFI injector in the intake manifold while diesel is injected directly into the cylinder to ignite the premixed mixture. In the present study, dual fuel operation has been investigated in a single cylinder research engine.
Journal Article

Infrared/Visible Optical Diagnostics of RCCI Combustion with Dieseline in a Compression Ignition Engine

2020-04-14
2020-01-0557
Compression ignition engines are widely used for transport and energy generation due to their high efficiency and low fuel consumption. To minimize the environmental impact of this technology, the pollutant emissions levels at the exhaust are strictly regulated. To reduce the after-treatment needs, alternative strategies as the low temperature combustion (LTC) concepts are being investigated recently. The reactivity controlled compression ignition (RCCI) uses two fuels (direct- and port- injected) with different reactivity to control the in-cylinder mixture reactivity by adjusting the proportion of both fuels. In spite of the proportion of the port-injected fuel is typically higher than the direct-injected one, the characteristics of the latter play a main role on the combustion process. Use of gasoline for direct injection is attractive to retard the start of combustion and to improve the air-fuel mixing process.
X