Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Finite Element Model of Region-Specific Response for Mild Diffuse Brain Injury

2009-11-02
2009-22-0007
It is well known that rotational loading is responsible for a spectrum of diffuse brain injuries spanning from concussion to diffuse axonal trauma. Many experimental studies have been performed to understand the pathological and biomechanical factors associated with diffuse brain injuries. Finite element models have also been developed to correlate experimental findings with intrinsic variables such as strain. However, a paucity of studies exists examining the combined role of the strain-time parameter. Consequently, using the principles of finite element analysis, the present study introduced the concept of sustained maximum principal strain (SMPS) criterion and explored its potential applicability to diffuse brain injury. An algorithm was developed to determine if the principal strain in a finite element of the brain exceeded a specified magnitude over a specific time interval.
Technical Paper

Analysis of Force Mitigation by Boots in Axial Impacts using a Lower Leg Finite Element Model

2020-03-31
2019-22-0011
Lower extremity injuries caused by floor plate impacts through the axis of the lower leg are a major source of injury and disability for civilian and military vehicle occupants. A collection of PMHS pendulum impacts was revisited to obtain data for paired booted/unbooted test on the same leg. Five sets of paired pendulum impacts (10 experiments in total) were found using four lower legs from two PMHS. The PMHS size and age was representative of an average young adult male. In these tests, a PMHS leg was impacted by a 3.4 or 5.8 kg pendulum with an initial velocity of 5, 7, or 10 m/s (42-288 J). A matching LS-DYNA finite element model was developed to replicate the experiments and provide additional energy, strain, and stress data. Simulation results matched the PMHS data using peak values and CORA curve correlations. Experimental forces ranged between 1.9 and 12.1 kN experimentally and 2.0 and 11.7 kN in simulation.
Technical Paper

Anthropometry of U.S. Infants and Children

1975-02-01
750423
This report presents the results of a three-year study designed to collect analyze, and reduce selected anthropometric data on 4027 infants and children representative of the current U.S. population ranging in age from newborn to 12 years of age. Since the major purpose was to provide basic measurement data most useful and critical to consumer product design, regulatory consideration, or other direct applications, 12 of the 41 measurements taken were applied measurements which have not been previously available. As an example of the direct application to product design, measurement of buttock depth on 3-to 6-month-old infants provided an objective basis for establishment of crib interslat distances. A substantial portion of the study involved the design, fabrication, development, and testing of a new generation of anthropometric measuring devices which transmit measurement signals to a portable mini-computer data acquisition system or to a set of readout meters.
Technical Paper

Biodynamics of the Total Human Cadaveric Cervical Spine

1990-10-01
902309
Spinal trauma produced from motor vehicle accidents, diving accidents, or falls occur at high rates of loading. This study was undertaken to reproduce clinically relevant cervical spine injuries under controlled conditions. Six isolated head - T2 human cadaveric preparations were tested using an electrohydraulic piston actuator at loading rates from 295 to 813 cm/sec. The Hybrid III head-neck was tested similarly at rates from 401 to 683 cm/sec. The input forces for specimen tests were of higher magnitude and shorter duration than the distally measured forces. In contrast, the Hybrid III head-neck revealed similar magnitude and duration force traces from input to output. The specimen preparations were analyzed kinematically at 1200 frames/sec with 20 to 30 retroreflective targets fixed to each level of the cervical spine. With this technique it is possible to temporally follow cervical damage as a function of applied force.
Technical Paper

Bioengineering of Impact Survival in Business Aircraft

1969-02-01
690335
Aircraft used for business (executive corporate transportation or personal business) and utility purposes now represent about one-third of the total United States aircraft inventory. Data from accident investigation of business aircraft involved in survivable accidents indicate serious injuries and fatality to the occupants occur most frequently as a result of the unprotected head and neck or chest flailing in contact with aircraft controls, instrument panel, or structure. Improvement of current aircraft to provide increased occupant safety and survival during crash impacts is both necessary and feasible. Design considerations include folding seat back locks to prevent collapse, increased seat tie-down to structure, instrument panels and glare shields designed to absorb energy through structural design and padding, stronger seat structure, lateral protection, design and packaging of knobs and projections to minimize injury in contact, and installation of upper torso restraint.
Technical Paper

Biomechanical Analysis of Swimming Pool Neck Injuries

1979-02-01
790137
This paper presents an analysis of 67 neck injuries incurred in diving and sliding accidents in swimming pools. The accidents were investigated to establish the appropriate medical and mechanical factors involved. A mathematical model was developed to allow the prediction of the trajectory and velocity of the subjects prior to their injury. Nine of the accidents were selected for real life simulation. The simulation included the selection of test subjects of similar physical build to the accident victims who then performed the maneuvers leading to the injury, but in deeper water. High speed movies (200 frames per second) were taken, above and below the water, to measure the motion. A frame by frame analysis provided data to determine the trajectory and velocity profiles of the test subject. The maneuvers studied included diving from the pool edge, diving from various board types and sliding down various sliding board configurations.
Technical Paper

Biomechanical Analysis of Tractor Induced Head Injury

1994-09-01
941726
Head injury is a serious threat to lives of people working around farm machinery. The consequence of head injuries are costly, paralytic, and often fatal. Clinical and biomechanical data on head injuries are reviewed and their application in the analysis of head injury risk associated with farm tractor discussed. A significant proportion of tractor-related injuries and deaths to adults, as well as children, is due directly or indirectly to head injury. An improved injury reporting program and biomechanical studies of human response to tractor rollover, runover, and falls, are needed to understand mechanisms of the associated head injury.
Technical Paper

Biomechanical Evaluation of Steering Wheel Design

1982-02-01
820478
In a crash, impact against the steering assembly can be a major cause of serious and fatal injury to drivers. But the interrelationship between injury protection and factors of surface area, configuration, padding, relative position of the spokes, and number and stiffness of spokes and rim is not clear. This paper reports a series of high-G sled tests conducted with anesthetized animal subjects in 30 mph impacts at 30 G peaks. A total of eight tests were conducted, five utilizing pig subjects, one a female chimpanzee, one an anthropomorphic dummy, and one test with no subject. Instrumentation included closed circuit TV, a tri-axial load cell mounted between the steering wheel and column, seat belt load measurement, six Photo-Sonics 1000 fps motion picture cameras, and poloroid photography. Medical monitoring pre, during and post-impact was followed by gross and microscopic tissue examination.
Technical Paper

Biomechanical Properties of the Human Neck in Lateral Flexion

1975-02-01
751156
Properties of the human neck which may influence a person's susceptibility to “whiplash” injury during lateral impact have been studied in 96 normal subjects. Subjects were chosen on the basis of age, sex, and stature and data were grouped into six primary categories based on sex (F, M) and age (18-24, 35-44, 62-74). The data include: measures of head, neck and body anthropometry in standing and simulated automotive seating positions, three-dimensional range of motion of the head and neck, head/neck response to low-level acceleration, and both stretch reflex time and voluntary isometric muscle force in the lateral direction. Reflex times are found to vary from about 30 to 70 ms with young and middle aged persons having faster times than older persons, and females having faster times than males. Muscle strength decreases with age and males are, on the average, stronger than females.
Technical Paper

Biomechanical Response of Military Booted and Unbooted Foot-Ankle-Tibia from Vertical Loading

2016-11-07
2016-22-0010
A new anthropomorphic test device (ATD) is being developed by the US Army to be responsive to vertical loading during a vehicle underbody blast event. To obtain design parameters for the new ATD, a series of non-injurious tests were conducted to derive biofidelity response corridors for the foot-ankle complex under vertical loading. Isolated post mortem human surrogate (PMHS) lower leg specimens were tested with and without military boot and in different initial foot-ankle positions. Instrumentation included a six-axis load cell at the proximal end, three-axis accelerometers at proximal and distal tibia, and calcaneus, and strain gages. Average proximal tibia axial forces for a neutral-positioned foot were about 2 kN for a 4 m/s test, 4 kN for 6 m/s test and 6 kN for an 8 m/s test. The force time-to-peak values were from 3 to 5 msec and calcaneus acceleration rise times were 2 to 8 msec.
Technical Paper

Biomechanical and Injury Response to Posterolateral Loading From Torso Side Airbags

2010-11-03
2010-22-0012
This study characterized thoracoabdominal response to posterolateral loading from a seat-mounted side airbag. Seven unembalmed post-mortem human subjects were exposed to ten airbag deployments. Subjects were positioned such that the deploying airbag first contacted the posterolateral thorax between T6 and L1 while stationary (n = 3 x 2 aspects) or while subjected to left lateral sled impact at ΔV = 6.7 m/s (n = 4). Chestband contours were analyzed to quantify deformation direction in the thoracic x-y plane (zero degrees indicating anterior and 180° indicating posterior), magnitude, rate, and viscous response. Skeletal injuries were consistent with posterolateral contact; visceral injuries consisted of renal (n = 1) or splenic (n = 3) lacerations. Deformation direction was transient during sled impact, progressing from 122 ± 5° at deformation onset to 90° following maximum deflection. Angles from stationary subjects progressed from 141 ± 9° to 120°.
Technical Paper

Biomechanics of Inertial Head-Neck Trauma: Role of Cervical Components

2002-03-19
2002-01-1445
Inertial loading of the head-neck complex occurs in rear impacts wherein the head and neck of the occupant are initially subjected to rearward forces. Epidemiological evidence exists to demonstrate the significance and societal impact of these injuries [4]. From a clinical perspective, trauma secondary to inertial loads belongs to the lower end of the Abbreviated Injury Scale, and no specific diagnostic techniques are available to quantitatively document the injury. Furthermore, identification of the mechanisms of injury and derivation of injury thresholds are limited. In fact, there is a paucity of literature focusing on the reproduction of rear impact-induced neck injuries due to a single-event rear impact. Because the impact acceleration is transmitted to the head from the torso via the cervical column, the components of the human neck play a role in the mechanics of trauma.
Technical Paper

Biomechanics of Lumbar Motion-Segments in Dynamic Compression

2017-11-13
2017-22-0001
Recent epidemiology studies have reported increase in lumbar spine injuries in frontal crashes. Whole human body finite element models (FEHBM) are frequently used to delineate mechanisms of such injuries. However, the accuracy of these models in mimicking the response of human spine relies on the characterization data of the spine model. The current study set out to generate characterization data that can be input to FEHBM lumbar spine, to obtain biofidelic responses from the models. Twenty-five lumbar functional spinal units were tested under compressive loading. A hydraulic testing machine was used to load the superior ends of the specimens. A 75N load was placed on the superior PMMA to remove the laxity in the joint and mimic the physiological load. There were three loading sequences, namely, preconditioning, 0.5 m/s (non-injurious) and 1.0 m/s (failure). Forces and displacements were collected using six-axis load cell and VICON targets.
Technical Paper

Cervical Range of Motion and Dynamic Response and Strength of Cervical Muscles

1973-02-01
730975
Basic physical characteristics of the neck have been defined which have application to the design of biomechanical models, anthropometric dummies, and occupant crash protection devices. The study was performed using a group of 180 volunteers chosen on the basis of sex, age (18-74 years), and stature. Measurements from each subject included anthropometry, cervical range-of-motion (observed with both x-rays and photographs), the dynamic response of the cervical flexor and extensor muscles to a controlled jerk, and the maximum voluntary strength of the cervical muscles. Data are presented in tabular and graphic form for total range-of-motion, cervical muscle reflex time, decelerations of the head, muscle activation time, and cervical muscle strength. The range-of-motion of females was found to average 1-12 deg greater than that of males, depending upon age, and a definite degradation in range-of-motion was observed with increasing age.
Technical Paper

Characterizing Occipital Condyle Loads Under High-Speed Head Rotation

2005-11-09
2005-22-0002
Because of the need to evaluate anthropomorphic test device (ATD) biofidelity under high-head angular accelerations, the purpose of the present investigation was to develop appropriate instrumentation for intact post mortem human subject (PMHS) testing, validate the instrumentation, and obtain information to characterize the response of the head-neck complex under this loading scenario. A series of rigid-arm pendulum, inertially loaded ATD tests was conducted. Head and neck ATD hydraulic piston chin pull tests were conducted. Subsequently, a series of PMHS tests was conducted to derive the response of the human head-neck under high-rate chin loading. Finally, Hybrid III and THOR-NT ATD head-neck systems were evaluated under the same scenario as the PMHS. A parametric analysis for center of gravity (CG) location and accelerometer orientation determined that even small errors (± 3 mm or 2 degrees), produced errors in the force and moment calculations by as much as 17%.
Technical Paper

Chestband Analysis of Human Tolerance to Side Impact

1997-11-12
973320
A series of 26 human cadaver tests with chestband instrumentation and accelerometers were completed to assess side impact injury tolerance. A Heidelberg-type sled test system was used with thorax, abdomen, and pelvic load plates. Tests were conducted at the Medical College of Wisconsin and through the Ohio State University College of Medicine at the NHTSA Vehicle Research and Test Center at two different velocities: 24 kph and 32 kph. Test conditions included rigid wall, padded wall, and pelvic offset. Accelerations were recorded at rib 4, rib 8, and T12. Up to three chestbands were placed on each surrogate. Chest deflections were derived by computing chest contours at every millisecond throughout the event. The derived chest deflection-time curves were differentiated to obtain velocity of chest compression. Injury criteria including ASA15N, TTI, normalized chest deflection, and VC were computed. Resulting injuries ranged from AIS = 0 to AIS = 5.
Technical Paper

Civil Aircraft Restraint Systems: State-of-the-Art Evaluation of Standards, Experimental Data, and Accident Experience

1977-02-01
770154
The importance of crashworthiness and the role of restraint systems in occupant impact protection in U.S. civil aircraft design is being increasingly recognized. Current estimates of the number of fatalities which could be prevented annually in survivable accidents range from 33 to 94%. This study reviews the development of existing Federal Aviation Administration restraint system standards from the first requirement for safety belts in the Air Commerce Regulations of 1926 to present 14 CFR 1.1. The FAA and industry standards are critically evaluated for Parts 23 (small airplanes), 25 (air transports), 27 (rotorcraft), and 29 (transport category rotorcraft). State-of-the-art developments, including an overview of previous accident experience, results of experimental studies, comparison with other standards, and primary data sources are provided.
Technical Paper

Comparison of PMHS, WorldSID, and THOR-NT Responses in Simulated Far Side Impact

2007-10-29
2012-01-1537
Injury to the far side occupant has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to determine the response of PMHS in far side impact configurations, with and without generic countermeasures, and compare responses to the WorldSID and THOR dummies. A far side impact buck was designed for a sled test system that included a center console and three-point belt system. The buck allowed for additional options of generic countermeasures including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o'clock PDOF) or a 60-degree (2-o'clock PDOF) orientation. A total of 18 tests on six PMHS were done to characterize the far side impact environment at both low (11 km/h) and high (30 km/h) velocities. WorldSID and THOR-NT tests were completed in the same configurations to conduct matched-pair comparisons.
Technical Paper

Comparison of PMHS, WorldSID, and THOR-NT Responses in Simulated Far Side Impact

2007-10-29
2007-22-0014
Injury to the far side occupant has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to determine the response of PMHS in far side impact configurations, with and without generic countermeasures, and compare responses to the WorldSID and THOR dummies. A far side impact buck was designed for a sled test system that included a center console and three-point belt system. The buck allowed for additional options of generic countermeasures including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o'clock PDOF) or a 60-degree (2-o'clock PDOF) orientation. A total of 18 tests on six PMHS were done to characterize the far side impact environment at both low (11 km/h) and high (30 km/h) velocities. WorldSID and THOR-NT tests were completed in the same configurations to conduct matched-pair comparisons.
Technical Paper

Crashworthiness Analysis of Field Investigation of Business Aircraft Accidents

1979-02-01
790587
Business and executive aviation represent a combined total of over 40% of the general aviation fleet, but (1977) accounted for only 8.37% of all general aviation accidents recorded. During the period 1964-1977 some 7,351 aircraft engaged in business flying, and 883 in corporate/executive operations, were involved in accidents reported by the NTSB. These accidents were reviewed utilizing the University of Michigan Computerized Accident Files to provide an overall view of the incidence and nature of business/executive aircraft accidents relative to occupant crash injuries. In addition more detailed case studies of selected accidents investigated including a Lear Jet 25B, Cessna 421, Beech Volpar Model 18, and Ted Smith Aerostar 601, are provided to illustrate specific types of crashworthiness, occupant protection, or post-crash emergency egress findings applicable to business/executive operations. Post-crash fire was reported in 29 cases (16.3%) during the 3-year period (1975-1977).
X