Refine Your Search

Topic

null

Search Results

Standard

70 MPa Compressed Hydrogen Surface Vehicle Fueling Connection Device and Optional Vehicle to Station Communications

2007-05-24
J2799_200705
This technical information report specifies a guideline for the hardware requirements for fueling a Hydrogen Surface Vehicle (HSV) with compressed hydrogen storage rated at a Nominal Working Pressure of 70 MPa. It contains a description of the receptacle geometry and optional communication hardware and communications protocol to refuel the HSV. The intent of this document is to enable harmonized development and implementation of the hydrogen fueling interfaces. It is intended to be utilized for hydrogen vehicle field evaluations until enough information is collected to enable standardization. The receptacle portion of this document is to be reevaluated utilizing international field data in approximately two (2) years and subsequently superseded by SAE J2600 in the 2009 timeframe.
Standard

Application Guideline for Use of Hydrogen Quality Specification

2022-11-02
J2719/1_202211
This SAE Information Report is intended to be used for routine (or periodic) monitoring of filling station performance. It is not intended to provide process quality control requirements for any portion of the product delivery cycle.
Standard

Characterization of On-Board Vehicular Hydrogen Sensors

2018-10-09
J3089_201810
This SAE Technical Information Report (TIR) provides test methods for evaluating hydrogen sensors when the hydrogen system integrator and/or vehicle manufacturer elect to use such devices on board their hydrogen vehicles, including hydrogen fuel cell electric vehicles (FCEV). The tests described in 5.1 of this document are performance-based and were developed to assess hydrogen sensor metrological parameters. These tests were designed to accommodate a wide range of environmental and operating conditions based on different possible situations and sensor implementations within the vehicle. Section 5.2 covers supplemental electrical safety and physical stress tests. These are based upon standard tests developed for qualifying electrical and other components for use on vehicles and do not explicitly pertain to gas sensor metrological performance assessment.
Standard

Compressed Hydrogen Surface Vehicle Fueling Connection Devices

2017-09-28
WIP
J2600
SAE J2600 applies to the design and testing of Compressed Hydrogen Surface Vehicle (CHSV) fueling connectors, nozzles, and receptacles. Connectors, nozzles, and receptacles must meet all SAE J2600 requirements and pass all SAE J2600 testing to be considered as SAE J2600 compliant. This document applies to devices which have Pressure Classes of H11, H25, H35, H50 or H70. 1.1 Purpose SAE J2600 is intended to: • Prevent vehicles from being fueled with a Pressure Class greater than the vehicle Pressure Class; • Allow vehicles to be fueled with Pressure Class equal to or less than the vehicle Pressure Class, • Prevent vehicles from being fueled by other compressed gases dispensing stations; • Prevent other gaseous fueled vehicles from being fueled by hydrogen dispensing stations.
Standard

Compressed Hydrogen Surface Vehicle Fueling Connection Devices

2012-11-19
J2600_201211
SAE J2600 applies to the design and testing of Compressed Hydrogen Surface Vehicle (CHSV) fueling connectors, nozzles, and receptacles. Connectors, nozzles, and receptacles must meet all SAE J2600 requirements and pass all SAE J2600 testing to be considered as SAE J2600 compliant. This document applies to devices which have Pressure Classes of H11, H25, H35, H50 or H70.
Standard

Compressed Hydrogen Surface Vehicle Fueling Connection Devices

2015-10-21
J2600_201510
SAE J2600 applies to the design and testing of Compressed Hydrogen Surface Vehicle (CHSV) fueling connectors, nozzles, and receptacles. Connectors, nozzles, and receptacles must meet all SAE J2600 requirements and pass all SAE J2600 testing to be considered as SAE J2600 compliant. This document applies to devices which have Pressure Classes of H11, H25, H35, H50 or H70.
Standard

Compressed Hydrogen Surface Vehicle Refuelling Connection Devices

2002-10-04
J2600_200210
SAE J2600 applies to design, safety and operation verification of Compressed Hydrogen Surface Vehicle (CHSV) refuelling connection devices hereinafter referred to as nozzle and receptacle. CHSV Refuelling nozzles and receptacles shall consist of the following components, as applicable. Alternatives may be used as long as the alternative geometries shall not be interchangeable with the standard geometry specified in this SAE Standard and the standard geometry in Section 6 provides insufficient flow rates: a Receptacle and protective cap (mounted on vehicle) (see Section 6 and 7); b Nozzle (see Section 5).
Standard

Fuel Cell Vehicle Terminology

2002-03-13
J2574_200203
This SAE Information Report contains definitions for hydrogen fuel cell powered vehicle terminology. It is intended that this document be a resource for those writing other hydrogen fuel cell vehicle documents, specifically, Standards or Recommended Practices.
Standard

Fuel Cell Vehicle Terminology

2011-09-06
J2574_201109
This SAE Information Report contains definitions for hydrogen fuel cell powered vehicle terminology. It is intended that this document be a resource for those writing other hydrogen fuel cell vehicle documents, specifically, Standards or Recommended Practices.
Standard

Fueling Protocol for Gaseous Hydrogen Powered Heavy Duty Vehicles

2014-09-24
J2601/2_201409
The purpose of this document is to provide performance requirements for hydrogen dispensing systems used for fueling 35 MPa heavy duty hydrogen transit buses and vehicles (other pressures are optional). This document establishes the boundary conditions for safe heavy duty hydrogen surface vehicle fueling, such as safety limits and performance requirements for gaseous hydrogen fuel dispensers used to fuel hydrogen transit buses. For fueling light-duty vehicles SAE J2601 should be used. SAE J2601-2 is a performance based protocol document that also provides guidance to fueling system builders, manufacturers of gaseous hydrogen powered heavy duty transit buses, and operators of the hydrogen powered vehicle fleet(s). This fueling protocol is suitable for heavy duty vehicles with a combined vehicle CHSS capacity larger than 10 kilograms aiming to support all practical capacities of transit buses.
Standard

Fueling Protocol for Gaseous Hydrogen Powered Industrial Trucks

2022-09-16
J2601/3_202209
This document establishes safety limits and performance requirements for gaseous hydrogen fuel dispensers used to fuel Hydrogen Powered Industrial Trucks (HPITs). It also describes several example fueling methods for gaseous hydrogen dispensers serving HPIT vehicles. SAE J2601-3 offers performance based fueling methods and provides guidance to fueling system builders as well as suppliers of hydrogen powered industrial trucks and operators of the hydrogen powered vehicle fleet(s). This fueling protocol for HPITs can support a wide range of hydrogen fuel cell hybrid electric vehicles including fork lifts, tractors, pallet jacks, on and off road utility, and specialty vehicles of all types. The mechanical connector geometry for H25 and H35 connectors are defined in SAE J2600 Compressed Hydrogen Surface Vehicle Refueling Connection Devices.
Standard

Fueling Protocol for Gaseous Hydrogen Powered Industrial Trucks

2013-06-12
J2601/3_201306
This document establishes safety limits and performance requirements for gaseous hydrogen fuel dispensers used to fuel Hydrogen Powered Industrial Trucks (HPITs). It also describes several example fueling methods for gaseous hydrogen dispensers serving HPIT vehicles. SAE J2601-3 offers performance based fueling methods and provides guidance to fueling system builders as well as suppliers of hydrogen powered industrial trucks and operators of the hydrogen powered vehicle fleet(s). This fueling protocol for HPITs can support a wide range of hydrogen fuel cell hybrid electric vehicles including fork lifts, tractors, pallet jacks, on and off road utility, and specialty vehicles of all types. The mechanical connector geometry for H25 and H35 connectors are defined in SAE J2600 Compressed Hydrogen Surface Vehicle Refueling Connection Devices.
Standard

Fueling Protocols for Light Duty Gaseous Hydrogen Surface Vehicles

2021-09-24
WIP
J2601
SAE J2601 establishes the protocol and process limits for hydrogen fueling of vehicles with total volume capacities greater than or equal to 49.7 L. These process limits (including the fuel delivery temperature, the maximum fuel flow rate, the rate of pressure increase, and the ending pressure) are affected by factors such as ambient temperature, fuel delivery temperature, and initial pressure in the vehicle’s compressed hydrogen storage system. SAE J2601 establishes standard fueling protocols based on either a look-up table approach utilizing a fixed pressure ramp rate, or a formula-based approach utilizing a dynamic pressure ramp rate continuously calculated throughout the fill. Both protocols allow for fueling with communications or without communications. The table-based protocol provides a fixed end-of-fill pressure target, whereas the formula-based protocol calculates the end-of-fill pressure target continuously.
Standard

Fueling Protocols for Light Duty Gaseous Hydrogen Surface Vehicles

2014-07-15
J2601_201407
SAE J2601 establishes the protocol and process limits for hydrogen fueling of light duty vehicles. These process limits (including fuel temperature, the maximum fuel flow rate, and rate of pressure increase and end pressure) are affected by factors such as ambient temperature, fuel delivery temperature and initial pressure in the vehicle’s compressed hydrogen storage system. SAE J2601-2014 establishes standard fueling protocols based on a look-up table approach with performance targets. The current standard is table-based and provides concise performance targets for both communications and non-communications fueling as described in Sections 7 through 10. An important factor in the performance of hydrogen fueling is the station’s dispensing equipment cooling capability and the resultant fuel delivery temperature “T” rating. SAE J2601 has a reference fueling target of 3 minutes with 95-100% SOC (with communications) with a T40 rated dispenser as specified in section 6.1.
Standard

Fueling Protocols for Light Duty Gaseous Hydrogen Surface Vehicles

2016-12-06
J2601_201612
SAE J2601 establishes the protocol and process limits for hydrogen fueling of light duty vehicles. These process limits (including the fuel delivery temperature, the maximum fuel flow rate, the rate of pressure increase and the ending pressure) are affected by factors such as ambient temperature, fuel delivery temperature and initial pressure in the vehicle’s compressed hydrogen storage system. SAE J2601 establishes standard fueling protocols based on either a look-up table approach utilizing a fixed pressure ramp rate, or a formula based approach utilizing a dynamic pressure ramp rate continuously calculated throughout the fill. Both protocols allow for fueling with communications or without communications. The table-based protocol provides a fixed end-of-fill pressure target, whereas the formula-based protocol calculates the end-of-fill pressure target continuously.
Standard

Fueling Protocols for Light Duty Gaseous Hydrogen Surface Vehicles

2020-05-29
J2601_202005
SAE J2601 establishes the protocol and process limits for hydrogen fueling of vehicles with total volume capacities greater than or equal to 49.7 L. These process limits (including the fuel delivery temperature, the maximum fuel flow rate, the rate of pressure increase, and the ending pressure) are affected by factors such as ambient temperature, fuel delivery temperature, and initial pressure in the vehicle’s compressed hydrogen storage system. SAE J2601 establishes standard fueling protocols based on either a look-up table approach utilizing a fixed pressure ramp rate, or a formula-based approach utilizing a dynamic pressure ramp rate continuously calculated throughout the fill. Both protocols allow for fueling with communications or without communications. The table-based protocol provides a fixed end-of-fill pressure target, whereas the formula-based protocol calculates the end-of-fill pressure target continuously.
Standard

Fueling Protocols for Light Duty Gaseous Hydrogen Surface Vehicles*

2010-03-16
J2601_201003
SAE TIR J2601 establishes safety limits and performance requirements for gaseous hydrogen fuel dispensers. The criteria include maximum fuel temperature at the dispenser nozzle, the maximum fuel flow rate, the maximum rate of pressure increase and other performance criteria based on the cooling capability of the station’s dispenser. This document establishes fueling guidelines for “non-communication fueling” in the absence of vehicle communication and guidelines for “communication fueling” when specified information is transmitted from the vehicle and verified at the dispenser. The process by which fueling is optimized using vehicle-transmitted information is specified. This document provides details of the communication data transmission protocol. The mechanical connector geometry is not covered in this document. SAE J2600 defines the connector requirements for fueling vehicles operating with a nominal working pressure of 35 MPa.
Standard

Gaseous Hydrogen and Fuel Cell Vehicle First and Second Responder Recommended Practice

2016-06-03
J2990/1_201606
Electric and alternative fueled vehicles present different hazards for first and second responders than conventional gasoline internal combustion engines. Hydrogen vehicles (H2V) including Fuel Cell Vehicles (FCVs) involved in incidents may present unique hazards associated with the fuel storage and high voltage systems. The electrical hazards associated with the high voltage systems of hybrid-electric vehicles and FCVs are already addressed in the parent document, SAE J2990. This Recommended Practice therefore addresses electric issues by reference to SAE J2990 and supplements SAE J2990 to address the potential consequences associated with hydrogen vehicle incidents and suggest common procedures to help protect emergency responders, tow and/or recovery, storage, repair, and salvage personnel after an incident has occurred. Industry design standards and tools were studied and where appropriate, suggested for responsible organizations to implement.
Standard

Gaseous Hydrogen and Fuel Cell Vehicle First and Second Responder Recommended Practice

2019-12-02
WIP
J2990/1
Electric and alternative fueled vehicles present different hazards for first and second responders than conventional gasoline internal combustion engines. Hydrogen vehicles (H2V) including Fuel Cell Vehicles (FCVs) involved in incidents may present unique hazards associated with the fuel storage and high voltage systems. The electrical hazards associated with the high voltage systems of hybrid-electric vehicles and FCVs are already addressed in the parent document, SAE J2990. This Recommended Practice therefore addresses electric issues by reference to SAE J2990 and supplements SAE J2990 to address the potential consequences associated with hydrogen vehicle incidents and suggest common procedures to help protect emergency responders, tow and/or recovery, storage, repair, and salvage personnel after an incident has occurred. Industry design standards and tools were studied and where appropriate, suggested for responsible organizations to implement.
Standard

High-Flow Prescriptive Fueling Protocols for Gaseous Hydrogen Powered Medium and Heavy-Duty Vehicles

2024-02-23
J2601/5_202402
This TIR establishes high-flow fueling protocols, including their process limits for fueling of compressed gaseous hydrogen vehicles at peak flow rates from 60 to 300 g/s with compressed hydrogen storage system (CHSS) volume capacities between 248.6 and 7500 L which have been qualified to UN GTR #13. This document is initially being published as a TIR due to limited field testing of the fueling protocols. Once the fueling protocols have been field tested, the SAE Fuel Cell Standards Committee Interface Task Force intends to publish a revision to this document as an SAE Standard.
X