Refine Your Search

Topic

Search Results

Standard

Dispenser Nozzle Spouts for Liquid Fuels Intended for Use with Spark Ignition and Compression Ignition Engines

2007-04-23
HISTORICAL
J285_200704
This SAE recommended practice provides standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzles that dispense liquid fuel into vehicles with Spark Ignition (SI) Engines and Compression Ignition (CI) Engines for land vehicles. Current legal definitions only distinguish between “UNLEADED Fuel” and “All Other Types of Fuel.” These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
Standard

Dispenser Nozzle Spouts for Liquid Fuels Intended for Use with Spark Ignition and Compression Ignition Engines

2019-04-29
CURRENT
J285_201904
This SAE Recommended Practice provides standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzles that dispense liquid fuel into vehicles with spark ignition (SI) engines and compression ignition (CI) engines for land vehicles. Current legal definitions only distinguish between “Unleaded Fuel” and “All Other Types of Fuel.” These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
Standard

Dispenser Nozzle Spouts for Liquid Fuels Intended for Use with Spark Ignition and Compression Ignition Engines

2012-05-31
HISTORICAL
J285_201205
This SAE recommended practice provides standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzles that dispense liquid fuel into vehicles with Spark Ignition (SI) Engines and Compression Ignition (CI) Engines for land vehicles. Current legal definitions only distinguish between “UNLEADED Fuel” and “All Other Types of Fuel.” These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
Standard

FUEL TANK FILLER CAP AND CAP RETAINER

1977-06-01
HISTORICAL
J829C_197706
This standard was developed primarily for passenger car and truck applications for the sizes indicated, but it may be used in marine, industrial, and similar applications.
Standard

FUEL TANK FILLER CAP AND CAP RETAINER

1988-02-01
HISTORICAL
J829_198802
This standard was developed primarily for passenger car and truck applications for the sizes indicated, but it may be used in marine, industrial, and similar applications.
Standard

Fuel Components and Systems Leak Tightness Specifications and Test Practices (or Methods)

2014-02-05
HISTORICAL
J2973_201402
This SAE recommended practice specifies a standard geometry leak channel to set the leak threshold and compare results from a variety of leak test technologies and test conditions. This practice applies to fuel system assemblies and components which have a risk of allowing regulated fuel or fuel vapors to continuously escape to atmosphere. A component or assembly tested to this standard has a zero HC leakage threshold because the selected leak channel (Equivalent Channel) will self-plug and will not emit measurable hydrocarbon liquid or vapors. Therefore this standard eliminates leaks as a source of evaporative emission. This practice was primarily developed for pressurized and non-pressurized fuel systems and components containing liquid hydrocarbon based fuels.
Standard

Fuel Components and Systems Leak Tightness Specifications and Test Practices (or Methods)

2018-12-19
CURRENT
J2973_201812
This SAE recommended practice specifies a standard geometry leak channel to set the leak threshold and compare results from a variety of leak test technologies and test conditions. This practice applies to fuel system assemblies and components which have a risk of allowing regulated fuel or fuel vapors to continuously escape to atmosphere. A component or assembly tested to this standard has a zero HC leakage threshold because the selected leak channel (Equivalent Channel) will self-plug and will not emit measurable hydrocarbon liquid or vapors. Therefore this standard eliminates leaks as a source of evaporative emission. This practice was primarily developed for pressurized and non-pressurized fuel systems and components containing liquid hydrocarbon based fuels.
Standard

Fuel Tank Filler Cap and Cap Retainer Threaded

2012-04-30
HISTORICAL
J1114_201204
This SAE Recommended Practice was developed primarily for passenger car and truck applications but it may be used in marine, industrial, and similar applications.
Standard

Fuel Tank Filler Cap and Cap Retainer Threaded

2000-06-06
HISTORICAL
J1114_200006
This SAE Recommended Practice was developed primarily for passenger car and truck applications but it may be used in marine, industrial, and similar applications.
Standard

Fuel Tank Filler Cap and Cap Retainer Threaded

2005-08-04
HISTORICAL
J1114_200508
This SAE Recommended Practice was developed primarily for passenger car and truck applications but it may be used in marine, industrial, and similar applications.
Standard

Gasoline, Alcohol, and Diesel Fuel Surrogates for Materials Testing

2000-01-10
HISTORICAL
J1681_200001
This SAE Recommended Practice presents recommendations for test fluids that can be used to simulate real world fuels. The use of standardized test fluids is required in order to limit the variability found in commercial fuels and fluids. Commercial fuels can vary substantially between manufacturers, batches, seasons, and geographic location. Further, standardized test fluids are universally available and will promote consistent test results for materials testing. Therefore, this document a Explains commercial automotive fuel components b Defines standardized components of materials test fluids c Defines a nomenclature for test fluids d Describes preparations for test fluids and e Recommends fluids for testing fuel system materials The test fluid compositions specified in Section 7 of this document are recommended solely for evaluating materials.
Standard

Optimized Fuel Tank Sender Closure

2019-03-08
CURRENT
J2587_201903
This practice describes recommended performance requirements of fuel tank closures used in conjunction with fuel level senders and fuel delivery systems. It provides guidelines that assure interchangeability and compatibility between fuel tanks and fuel pump/sender closure systems without specifying a specific closure system design. These systems may be used in rigid fuel tank systems made of plastic or metal. Complete details of specific designs shall be established by mutual agreement between customer and supplier. The dimensions and performance requirements are selected to optimize a The closure system, durability and reliability with respect to — Vehicle SHED measurements — Fuel system / crash integrity — LEV – II useful life b Assembly and service ease and reliability c Packaging of fuel tanks and their sending units d Interchangeability of sender closures between various fuel tank designs
Standard

Optimized Fuel Tank Sender Closure

2005-10-25
HISTORICAL
J2587_200510
This practice describes recommended performance requirements of fuel tank closures used in conjunction with fuel level senders and fuel delivery systems. It provides guidelines that assure interchangeability and compatibility between fuel tanks and fuel pump/sender closure systems without specifying a specific closure system design. These systems may be used in rigid fuel tank systems made of plastic or metal. Complete details of specific designs shall be established by mutual agreement between customer and supplier. The dimensions and performance requirements are selected to optimize a The closure system, durability and reliability with respect to — Vehicle SHED measurements — Fuel system / crash integrity — LEV – II useful life b Assembly and service ease and reliability c Packaging of fuel tanks and their sending units d Interchangeability of sender closures between various fuel tank designs
Standard

PRELIMINARY STANDARD FOR PROTECTIVE COVERS FOR GASOLINE FUEL LINE TUBING

1994-06-01
HISTORICAL
J2027_199406
This SAE Standard covers the performance requirements for protective covers for gasoline fuel tubing. The ultimate performance of the protective cover can be highly dependant on the interaction of the fuel line tubing and protective cover. Therefore, it is recommended that specific tubing and cover combinations be tested as an assembly to qualify to this document.
Standard

Performance Requirements for Fuel System Tubing Assemblies

2012-11-01
CURRENT
J2045_201211
This SAE Standard encompasses the recommended minimum requirements for non-metallic tubing and/or combinations of metallic tubing to non-metallic tubing assemblies manufactured as liquid- and/or vapor-carrying systems designed for use in gasoline, alcohol blends with gasoline, or diesel fuel systems. This SAE Standard is intended to cover tubing assemblies for any portion of a fuel system which operates above −40 °C (−40 °F) and below 115 °C (239 °F), and up to a maximum working gage pressure of 690 kPa (100 psig). The peak intermittent temperature is 115 °C (239 °F). For long-term continuous usage, the temperature shall not exceed 90 °C (194 °F). It should be noted that temperature extremes can affect assemblies in various manners and every effort must be made to determine the operating temperature to which a specific fuel line assembly will be exposed, and design accordingly.
Standard

QUICK CONNECTOR SPECIFICATION FOR LIQUID FUEL AND VAPOR/EMISSIONS SYSTEMS

1996-01-01
HISTORICAL
J2044_199601
This SAE Recommended Practice defines the minimum functional requirements for quick connectors used in supply, return, and vapor/emissions lines for flexible tubing systems. This document applies to automotive and light truck gasoline and diesel fuel systems with operating pressures up to 500 kPa, 5 bar, (72 psig) and operating temperatures up to 115 °C (239 °F). These tests apply to new connectors in assembly operations. Connectors must be pushed onto a mating tube end then pulled back to assure complete connection. For service operations, the mating tube should be lubricated with SAE 30 weight oil before re-connecting. Vehicle OEM fuel system specifications may impose additional requirements beyond the scope of this general SAE document. In those cases, the OEM specification takes precedence over this document.
Standard

Quick Connect Coupling Specification for Liquid Fuel and Vapor/Emissions Systems

2002-09-13
HISTORICAL
J2044_200209
This SAE Recommended Practice defines standard tube end form dimensions so as to guarantee interchangeability between all connector designs of the same size and the standard end form. This document also defines the minimum functional requirements for quick connect couplings between flexible tubing or hose and rigid tubing or tubular fittings used in supply, return, and vapor/emissions in fuel systems. This document applies to automotive and light truck applications under the following conditions: a Gasoline and diesel fuel delivery systems or their vapor venting or evaporative emission control systems. b Operating pressure up to 500 kPa, 5 bar, (72 psig). c Operating vacuum down to –50 kPa, –0.5 bar (–7.2 psi). d Operating temperatures from –40 °C (–40 °F) to 115 °C (239 °F). Quick connect couplings function by joining the connector to a mating tube end form then pulling back to assure a complete connection.
Standard

Quick Connect Coupling Specification for Liquid Fuel and Vapor/Emissions Systems

2009-08-13
CURRENT
J2044_200908
This SAE Recommended Practice defines the minimum functional requirements for quick connect couplings used for supply, return, and vapor/emission fuel system connections. This document also defines standard male tube end form dimensions, so as to guarantee interchangeability between all connector designs of the same male tube end form size. This document applies to automotive and light truck applications under the following conditions: a Gasoline and diesel fuel delivery systems or their vapor venting or evaporative emission control systems. b Operating pressure up to 500 kPa, 5 bar, (72 psig). c Operating vacuum down to −50 kPa, −0.5 bar (−7.2 psi). d Operating temperatures from −40 °C (−40 °F) to 115 °C (239 °F). Quick connect couplings function by joining the connector to a mating tube end form, then pulling back to assure a complete connection. The requirements stated in this document apply to new connectors in assembly operations unless otherwise indicated.
Standard

Quick Connector Specification for Liquid Fuel and Vapor/Emissions Systems

1997-12-01
HISTORICAL
J2044_199712
This SAE Recommended Practice defines the minimum functional requirements for quick connectors used in supply, return, and vapor/emissions lines for flexible-tubing systems. This document applies to automotive and light truck gasoline and diesel fuel systems with operating pressure or vacuum up to 500 kPa, 5 bar, (72 psig) and operating temperatures up to 115 °C (239 °F). These tests apply to new connectors in assembly operations. Connectors must be pushed onto a mating tube end then pulled back to assure complete connection. For service operations, the mating tube should be lubricated with SAE 30 weight oil before re-connecting. Vehicle OEM fuel system specifications may impose additional requirements beyond the scope of this general SAE document. In those cases, the OEM specification takes precedence over this document.
Standard

Rated (Advertised) Fuel Capacity - Passenger Car, Multi-Purpose Passenger Vehicles, and Light Duty Trucks

2012-11-01
CURRENT
J398_201211
This recommended practice provides a method for establishing the rated or advertised fuel capacity for a vehicle utilizing liquid fuel at atmospheric pressure. It applies to passenger cars, multi-purpose passenger vehicles and light duty trucks (10 000 lb (4536 kg) maximum GVW), (Ref. SAE J1100). It also includes a standardized procedure for creating a full tank when another test requires that condition as a starting point. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
X