Refine Your Search

Topic

Search Results

Standard

Dispenser Nozzle Spouts for Liquid Fuels Intended for Use with Spark Ignition and Compression Ignition Engines

2007-04-23
HISTORICAL
J285_200704
This SAE recommended practice provides standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzles that dispense liquid fuel into vehicles with Spark Ignition (SI) Engines and Compression Ignition (CI) Engines for land vehicles. Current legal definitions only distinguish between “UNLEADED Fuel” and “All Other Types of Fuel.” These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
Standard

Dispenser Nozzle Spouts for Liquid Fuels Intended for Use with Spark Ignition and Compression Ignition Engines

2019-04-29
CURRENT
J285_201904
This SAE Recommended Practice provides standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzles that dispense liquid fuel into vehicles with spark ignition (SI) engines and compression ignition (CI) engines for land vehicles. Current legal definitions only distinguish between “Unleaded Fuel” and “All Other Types of Fuel.” These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
Standard

Dispenser Nozzle Spouts for Liquid Fuels Intended for Use with Spark Ignition and Compression Ignition Engines

2012-05-31
HISTORICAL
J285_201205
This SAE recommended practice provides standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzles that dispense liquid fuel into vehicles with Spark Ignition (SI) Engines and Compression Ignition (CI) Engines for land vehicles. Current legal definitions only distinguish between “UNLEADED Fuel” and “All Other Types of Fuel.” These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
Standard

FILLER PIPES AND OPENINGS OF MOTOR VEHICLE FUEL TANKS

1976-12-01
HISTORICAL
J1140_197612
This Recommended Practice was developed primarily for gasoline-powered passenger car and truck applications but may be used in marine, industrial, and similar applications where refueling vapor recovery is required.
Standard

FILLER PIPES AND OPENINGS OF MOTOR VEHICLE FUEL TANKS

1980-03-01
HISTORICAL
J1140_198003
This recommended practice was developed primarily for gasoline-powered passenger car and truck applications but may be used in marine, industrial, and similar applications where refueling vapor recovery is required.
Standard

FILLER PIPES AND OPENINGS OF MOTOR VEHICLE FUEL TANKS

1988-02-01
HISTORICAL
J1140_198802
This recommended practice was developed primarily for gasoline-powered passenger car and truck applications but may be used in marine, industrial, and similar applications where refueling vapor recovery is required.
Standard

FUEL SYSTEM ELECTROSTATIC CHARGE

1994-02-01
HISTORICAL
J1645_199402
The purpose of this SAE Information Report is to provide a summary of the electrostatic charge phenomenon (as it relates to an automotive fuel system) and how that phenomenon could be handled if it develops. The "fuel system" that is the subject of this document is the group of components used during the operation of the vehicle (tank, filler neck, pump, filter, lines, connectors, etc.). Electrostatic charge that may arise during refueling is also included. It is very important to note that this is a collection of ideas and generalities that are summarized from literature and presentations, inferred from some laboratory experimentation, and interpreted by the Electrostatics Subcommittee of the SAE Fuel Lines and Fittings Standards Committee. Some of the discussions are simplified. If more technical information is needed by users of this document, experts should be consulted or literature should be examined directly.
Standard

FUEL TANK FILLER CAP AND CAP RETAINER

1977-06-01
HISTORICAL
J829C_197706
This standard was developed primarily for passenger car and truck applications for the sizes indicated, but it may be used in marine, industrial, and similar applications.
Standard

FUEL TANK FILLER CAP AND CAP RETAINER

1988-02-01
HISTORICAL
J829_198802
This standard was developed primarily for passenger car and truck applications for the sizes indicated, but it may be used in marine, industrial, and similar applications.
Standard

FUEL TANK FILLER CONDITIONS - PASSENGER CAR, MULTI-PURPOSE PASSENGER VEHICLES, AND LIGHT DUTY TRUCKS

1988-02-01
HISTORICAL
J398_198802
This recommended practice defines conditions for evaluating the compatibility of vehicle fuel tanks and filler pipes with fuel dispensing facilities equipped with standard (non-vapor recovery) configuration as well as vapor recovery type nozzles. It applies to passenger cars, multi-purpose passenger vehicles, and light-duty trucks (10 000 lb (4536 kg) maximum gvw), (Ref. J1100, Motor Vehicle Dimensions). It includes a technique for filling a tank full that can be used to establish a reference condition for other tests which require starting with a full tank.
Standard

FUEL TANK FILLER CONDITIONS—PASSENGER CAR MULTI-PURPOSE PASSENGER VEHICLES, AND LIGHT DUTY TRUCKS

1978-06-01
HISTORICAL
J398B_197806
This recommended practice defines conditions for evaluating the compatibility of vehicle fuel tanks and filler pipes with fuel dispensing facilities equipped with standard (non-vapor recovery) configuration as well as vapor recovery type nozzles. It applies to passenger cars, multipurpose passenger vehicles, and light-duty trucks (10 000 lb (4536 kg) maximum gvw), (Ref. J1100a, Motor Vehicle Dimensions (September, 1975)). It includes a technique for filling a tank full that can be used to establish a reference condition for other tests which require starting with a full tank.
Standard

FUEL TANK FILLER CONDITIONS—PASSENGER CAR, MULTIPURPOSE PASSENGER VEHICLES, AND LIGHT-DUTY TRUCKS

1995-07-01
HISTORICAL
J398_199507
This SAE Recommended Practice defines conditions for evaluating the compatibility of vehicle fuel tanks and filler pipes with fuel dispensing facilities equipped with standard (non-vapor recovery) configuration as well as vapor recovery type nozzles. It applies to passenger cars, multipurpose passenger vehicles, and light-duty trucks 4536 kg (10 000 lb) maximum GVW (Ref. J1100). It includes a technique for filling a tank full that can be used to establish a reference condition for other tests which require starting with a full tank.
Standard

FUEL TANK FILLING CONDITIONS

1969-06-01
HISTORICAL
J398_196906
This recommended practice defines conditions for evaluating the compatibility of vehicle fuel tanks and fill pipes with fuel dispensing facilities. It applies to passenger cars, multipurpose passenger vehicles, and light-duty trucks. It also includes a technique for filling a tank “full” that can be used to establish a reference condition for other tests which require starting with a “full” tank.
Standard

Filler Pipes and Openings of Motor Vehicle Fuel Tanks

2000-04-04
HISTORICAL
J1140_200004
This SAE Recommended Practice was developed primarily for gasoline-powered passenger car and truck applications but may be used in marine, industrial, and similar applications where refueling vapor recovery is required.
Standard

Filler Pipes and Openings of Motor Vehicle Fuel Tanks

2019-10-02
CURRENT
J1140_201910
This SAE Recommended Practice was developed primarily for gasoline-powered passenger car and truck applications to interface vapor recovery systems, but may be used in diesel applications, marine, industrial, and similar applications where a nozzle is required for filling. The zones cover nozzle spout access and handle clearance to a refilling port. In addition, this practice includes a design window for nozzle manufacturers to develop with.
Standard

Filler Pipes and Openings of Motor Vehicle Fuel Tanks

2012-08-06
HISTORICAL
J1140_201208
This SAE Recommended Practice was developed primarily for gasoline-powered passenger car and truck applications but may be used in marine, industrial, and similar applications where refueling vapor recovery is required.
Standard

Fuel Components and Systems Leak Tightness Specifications and Test Practices (or Methods)

2014-02-05
HISTORICAL
J2973_201402
This SAE recommended practice specifies a standard geometry leak channel to set the leak threshold and compare results from a variety of leak test technologies and test conditions. This practice applies to fuel system assemblies and components which have a risk of allowing regulated fuel or fuel vapors to continuously escape to atmosphere. A component or assembly tested to this standard has a zero HC leakage threshold because the selected leak channel (Equivalent Channel) will self-plug and will not emit measurable hydrocarbon liquid or vapors. Therefore this standard eliminates leaks as a source of evaporative emission. This practice was primarily developed for pressurized and non-pressurized fuel systems and components containing liquid hydrocarbon based fuels.
Standard

Fuel Components and Systems Leak Tightness Specifications and Test Practices (or Methods)

2018-12-19
CURRENT
J2973_201812
This SAE recommended practice specifies a standard geometry leak channel to set the leak threshold and compare results from a variety of leak test technologies and test conditions. This practice applies to fuel system assemblies and components which have a risk of allowing regulated fuel or fuel vapors to continuously escape to atmosphere. A component or assembly tested to this standard has a zero HC leakage threshold because the selected leak channel (Equivalent Channel) will self-plug and will not emit measurable hydrocarbon liquid or vapors. Therefore this standard eliminates leaks as a source of evaporative emission. This practice was primarily developed for pressurized and non-pressurized fuel systems and components containing liquid hydrocarbon based fuels.
X