Refine Your Search

Topic

Search Results

Standard

AS6171 TECHNIQUES FOR SUSPECT/COUNTERFEIT EEE PART PACKAGING DETECTION BY VARIOUS TEST METHODS

2016-02-03
WIP
AS6171/15
Non-conformance and now Suspect counterfeit packaging represents a hazard to electrostatic discharge (ESD) sensitive devices or components through cross contamination during transport and storage while generating high voltage discharges to ESD sensitive devices during in shipping, the inspection process, handling and manufacturing. Several aerospace related issues involve long-term storage supplier non-conformance with antistatic foams, antistatic bubble, antistatic pink poly, vacuum formed antistatic polymers, Type I moisture barrier bags and Type III static shielding bags have posed issues. The late John Kolyer, Ph.D. (Boeing, Ret.) and Ray Gompf, P.E., Ph.D. (NASA-KSC, Ret.) were advocates in the utilization of a formalized physical testing material qualification process. Today, however, prime contractors and CMs rely heavily upon a visual inspection process for ESD packaging materials.
Standard

Requirements for Accreditation Bodies when Accrediting Test Laboratories Performing Detection of Suspect/Counterfeit in Accordance with AS6171 General Requirements and the Associated Test Methods

2018-05-16
CURRENT
AS6810
The criteria defined herein shall be utilized by an ISO/IEC 17025 Accreditation Body (AB) to establish conformance with AS6171 Test Methods Standard; General Requirements, Suspect/Counterfeit, Electrical, Electronic, and Electromechanical Parts and associated AS6171 Test Methods requested/included on the scope of accreditation.
Standard

TECHNIQUES FOR SUSPECT/COUNTERFEIT EEE PARTS DETECTION BY RADIATED ELECTROMAGNETIC EMISSION (REME) ANALYSIS TEST METHODS

2016-05-16
WIP
AS6171/14
The intent of this document is to define the methodology for suspect/counterfeit parts inspection using REME Analysis. The purpose of REME Analysis for suspect counterfeit part inspection is to detect misrepresentation or tampering of a part. REME Analysis can also potentially detect unintentional damage to the part resulting from improper removal of the part from assemblies, exposure to electrostatic discharge, exposure to radiation outside of acceptable limits (ionizing or high-power electromagnetic), or degradation. Improper removal of part from assemblies may include, but is not limited to, prolonged elevated temperature exposure during desoldering operations or mechanical stresses during removal. Degradation may include, but is not limited to, prolonged burn-in/testing, exposure to out-of-specification environmental conditions, or use outside of expected electrical tolerances.
Standard

Technique for Suspect/Counterfeit EEE Parts Detection by Laser Scanning Microscopy (LSM) and Confocal Laser Scanning Microscopy (CLSM) Test Methods

2015-12-17
WIP
AS6171/17
This document defines capabilities and limitations of LSM and CLSM as they pertain to suspect/counterfeit EEE part detection. Additionally, this document outlines requirements associated with the application of LSM and CLSM including: operator training, sample preparation, various imaging techniques, data interpretation, calibration, and reporting of test results. This test method is primarily directed to analyses performed in the visible to near infrared range (approximately 400nm to 1100nm). The Test Laboratory shall be accredited to ISO/IEC 17025 to perform the LSM and CLSM Test Methods as defined in this standard. The Test Laboratory shall indicate in the ISO/IEC 17025 Scope statement, the specific method being accredited to: Option 1: All AS6171/17 Test Methods, or Option 2: All AS6171/17 Test Methods except CLSM. If SAE AS6171/17 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
Standard

Technique for Suspect/Counterfeit EEE Parts Detection by Scanning Electron Microscopy (SEM) including Energy Dispersive X-Ray Spectroscopy Test Methods

2017-06-13
WIP
AS6171/22
To define capabilities and limitations of SEM-EDS as it pertains to counterfeit detection of EEE parts and suggest possible applications to these ends. Additionally, this document outlines requirements associated with the application of SEM-EDS including: Operator training; Sample preparation; Data interpretation; Equipment maintenance; and Reporting of data. If SAE AS6171/22 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
Standard

Technique for Suspect/Counterfeit EEE Parts Detection by Secondary Ion Mass Spectrometry (SIMS) Test Method

2015-09-18
WIP
AS6171/13
To define capabilities and limitations of SIMS as it pertains to counterfeit detection of EEE parts and suggest possible applications to these ends. Additionally, this document outlines requirements associated with the application of SIMS including: Operator training; Sample preparation; Data interpretation; Equipment maintenance; and Reporting of data. The Test Laboratory shall be accredited to ISO/IEC 17025 to perform the SIMS Test Method as defined in this standard. The Test Laboratory shall indicate in the ISO/IEC 17025 Scope statement, the specific method being accredited to: Option 1: All AS6171/13 Test Methods, or Option 2: All AS6171/13 Test Methods except imaging and 3D imaging, or Option 3: All AS6171/13 Test Methods except depth profiling and 3D imaging. If SAE AS6171/13 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
Standard

Techniques for Suspect/Counterfeit EEE Assembly Detection by Various Test Methods

2017-09-22
WIP
AS6171/23
The intent of this test method is to describe high level processes to detect suspect/counterfeit (SC) Electrical, Electronic, and Electromechanical (EEE) Assemblies, covering both custom and military/commercial off-the-shelf (COTS) assemblies. This standard includes requirements for accreditation and certification of Laboratory and Laboratory personnel, and also, data collection, interpretation, and reporting as applicable to this test method. This standard covers EEE assemblies and includes electronic circuit card assemblies as defined under the definition for EEE Assembly and Electronic Circuit Card Assembly.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Thermomechanical Analysis (TMA) Test Methods

2016-12-09
WIP
AS6171/18
This test method provides the capabilities, limitations, and suggested possible applications of TMA as it pertains to detection of suspect/counterfeit EEE parts. Additionally, this document outlines requirements associated with the application of TMA including: equipment requirements, test sample requirements, methodology, control and calibration, data analysis, reporting, and qualification and certification.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Acoustic Microscopy (AM) Test Methods

2017-09-11
WIP
AS6171/6A
Through the use of ultra-high frequency ultrasound, typically above 10 MHz, Acoustic Microscopy (AM) non-destructively finds and characterizes physical features and latent defects (visualization of interior features in a layer by layer process) - such as material continuity and discontinuities, sub-surface flaws, cracks, voids, delaminations and porosity. AM observed features and defects can be indicators that the components were improperly handled, stored, altered or previously used. If AS6171/6 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Acoustic Microscopy (AM) Test Methods

2016-10-30
CURRENT
AS6171/6
Through the use of ultra-high frequency ultrasound, typically above 10 MHz, Acoustic Microscopy (AM) non-destructively finds and characterizes physical features and latent defects (visualization of interior features in a layer by layer process) - such as material continuity and discontinuities, sub-surface flaws, cracks, voids, delaminations and porosity. AM observed features and defects can be indicators that the components were improperly handled, stored, altered or previously used. If AS6171/6 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Auger Electron Spectroscopy (AES) Test Method

2016-12-09
WIP
AS6171/19
This document defines capabilities and limitations of Auger Electron Spectroscopy (AES) as it pertains to detection of suspect/counterfeit EEE parts and suggests possible applications to these ends. Additionally, this document outlines requirements associated with the application of AES including: operator training and requirements; sample preparation; data interpretation and reporting of data.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Delid/Decapsulation Physical Analysis Test Methods

2017-02-01
WIP
AS6171/4A
This method standardizes inspection, test procedures and minimum training and certification requirements to detect Suspect/Counterfeit (SC) Electrical, Electronic, and Electromechanical (EEE) components or parts utilizing Delid/Decapsulation Physical Analysis. The methods described in this document are employed to either delid or remove the cover from a hermetically sealed package or to remove the encapsulation or coating of an EEE part, in order to examine the internal structure and to determine if the part is suspect counterfeit. Information obtained from this inspection and analysis may be used to: a. prevent inclusion of counterfeit parts in the assembly b. identify defective parts c. aid in disposition of parts that exhibit anomalies This test method should not be confused with Destructive Physical Analysis as defined in MIL-STD-1580. MIL-STD-1580 describes destructive physical analysis procedures for inspection and interpretation of quality issues.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Delid/Decapsulation Physical Analysis Test Methods

2016-10-30
CURRENT
AS6171/4
This method standardizes inspection, test procedures and minimum training and certification requirements to detect Suspect/Counterfeit (SC) Electrical, Electronic, and Electromechanical (EEE) components or parts utilizing Delid/Decapsulation Physical Analysis. The methods described in this document are employed to either delid or remove the cover from a hermetically sealed package or to remove the encapsulation or coating of an EEE part, in order to examine the internal structure and to determine if the part is suspect counterfeit. Information obtained from this inspection and analysis may be used to: a prevent inclusion of counterfeit parts in the assembly b identify defective parts c aid in disposition of parts that exhibit anomalies This test method should not be confused with Destructive Physical Analysis as defined in MIL-STD-1580. MIL-STD-1580 describes destructive physical analysis procedures for inspection and interpretation of quality issues.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Design Recovery Test Methods

2018-08-24
WIP
AS6171/11A
This method outlines the requirements, capabilities, and limitations associated with the application of Design Recovery for the detection of counterfeit electronic parts including: Operator training; Sample preparation; Imaging techniques; Data interpretation; Design/functional matching; Equipment maintenance and; Reporting of data. The method is primarily aimed at analyses performed by circuit delayering and imaging with a scanning electron microscope or optical microscope; however, many of the concepts are applicable to other microscope and probing techniques to recover design data. The method is not intended for the purpose of manufacturing copies of a device, but rather to compare images or recover the design for determination of authenticity. If AS6171/11 is invoked in the contract, the base document, AS6171 General Requirements shall also apply. SAE Counterfeit Defect Coverage Tool
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Design Recovery Test Methods

2016-10-30
CURRENT
AS6171/11
This method outlines the requirements, capabilities, and limitations associated with the application of Design Recovery for the detection of counterfeit electronic parts including: Operator training; Sample preparation; Imaging techniques; Data interpretation; Design/functional matching; Equipment maintenance and; Reporting of data. The method is primarily aimed at analyses performed by circuit delayering and imaging with a scanning electron microscope or optical microscope; however, many of the concepts are applicable to other microscope and probing techniques to recover design data. The method is not intended for the purpose of manufacturing copies of a device, but rather to compare images or recover the design for determination of authenticity. If AS6171/11 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Gas Chromatography/Mass Spectrometry (GC/MS) Test Methods

2016-12-09
WIP
AS6171/21
This document defines capabilities and limitations of Gas Chromatography/Mass Spectrometry (GC/MS) as it pertains to detection of suspect/counterfeit EEE parts and suggests possible applications to these ends. Additionally, this document outlines requirements associated with the application of GC/MS including: operator training; sample preparation; various sampling techniques; data interpretation; computerized spectral matching; equipment maintenance; and reporting of data. The discussion is limited to unit mass resolution spectrometers such as quadrupole systems and electron impact ionization.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Netlist Assurance Test Methods

2016-02-15
WIP
AS6171/16
Netlist Assurance Test Methods exist to assess microcircuit designs for maliciously added, removed, or modified functions detrimental to system operation. In the context of the Microcircuit fabrication design process, these methods will be used to analyze a computer aided design (CAD) representation of the microcircuit. The Netlist Assurance Test Methods discover vulnerabilities, undisclosed functions (e.g. "kill switch", paths to leak passwords, or triggers of malicious activity) and changes from the original specifications of the devices. These methods are intended to be used with standard verification methods that the implemented design has remained unchanged through the many transformations in the design flow.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Radiological Test Methods

2016-10-30
CURRENT
AS6171/5
The intent of this document is to define the methodology for suspect parts inspection using radiological inspection. The purpose of radiology for suspect counterfeit part inspection is to detect deliberate misrepresentation of a part, either at the part distributor or original equipment manufacturer (OEM) level. Radiological inspection can also potentially detect unintentional damage to the part resulting from improper removal of part from assemblies, which may include, but not limited to, prolonged elevated temperature exposure during desoldering operations or mechanical stresses during removal. Radiological inspection of electronics includes film radiography and filmless radiography such as digital radiography (DR), real time radiography (RTR), and computed tomography (CT). Radiology is an important tool used in part verification of microelectronic devices.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by X-Ray Photoelectron Spectroscopy (XPS) Test Method

2016-12-09
WIP
AS6171/20
To define capabilities and limitations of X-Ray Photoelectron Spectroscopy (XPS) as it pertains to detection of suspect/counterfeit EEE parts and suggest possible applications to these ends. Additionally, this document outlines requirements associated with the application of XPS including: operator training and requirements; sample preparation; data interpretation; and data reporting procedures.
X