Refine Your Search

Search Results

Technical Paper

A Diagnostic Two-Zone Combustion Model for Spark-Ignition Engines Based on Pressure-Time Data

1988-02-01
880199
A simple diagnostic combustion model for spark-Ignition engines, based on pressure-time data, is described. It considers the charge to be made up of two zones, burnt products and unburnt reactants, each of which is undergoing a series of continuously varying yet distinctly different polytropic processes. The two zones exchange mass across the flame front, due to combustion. This simple approach which utilizes essentially no correlations or empirical formulae produces results such as the rate of burning of the reactants, the rate of change of volume of each of the two zones, as well as the mean temperature hirstories of each of the two zones throughout the combustion period.
Technical Paper

A PREDICTIVE MODEL FOR GAS FUELED SPARK IGNITION ENGINE APPLICATIONS

1999-10-25
1999-01-3482
A predictive procedure for establishing the performance parameters of spark ignition engines fueled with a range of gaseous fuels and their mixtures is described. The incidence of knock and its relative intensity are also accounted for. The two-zone model incorporates a procedure for deriving an estimate of the effective duration of combustion and the associated mass burning rate for various operating conditions and gaseous fuels. The preignition chemical reaction activity of the unburned end gas zone and its consequences on cylinder pressure development is evaluated while using detailed chemical kinetics. The onset of autoignition and knock is established via a parameter that monitors the incremental pressure increase solely due to the preignition reaction activity per unit of mean effective combustion pressure.
Technical Paper

A Predictive Model for Knock in Dual Fuel Engines

1992-08-01
921550
A model is described for the prediction of the onset of autoignition and knock in compression ignition engines of the dual fuel type. The associated variations with time of performance parameters such as the energy release rate, cylinder pressure and charge temperature, power output and species concentrations can also be obtained. This is achieved through modelling in detail the chemical reaction rates of the gaseous fuel during compression and subsequently during diesel fuel pilot ignition and combustion. A comprehensive reaction scheme involving 105 reaction steps with 31 chemical species is employed for the purpose. The results are based mainly on methane or propane as the gaseous fuel while accounting for the contribution of pilot diesel fuel injection. Calculated data showed good general agreement with the corresponding experimental values.
Technical Paper

A Predictive Model for Knock in Spark Ignition Engines

1992-10-01
922366
The present contribution combines the consideration of the chemical reaction activity of the end gas and engine operating conditions to predict the onset of knock and associated performance in a spark ignition engine fuelled with methane. A two-zone predictive combustion model was developed based on an estimate of the effective duration of the combustion period and the mass burning rate for any set of operating conditions. The unburned end gas preignition chemical reaction activity is described by a detailed chemical reaction kinetic scheme for methane and air. The variation with time of the value of a formulated dimensionless knock parameter based on the value of the cumulative energy released due to preignition reaction activity of the end gas per unit volume relative to the total energy release per unit cylinder swept volume is calculated It is shown that whenever knocking is encountered, the value of builds up to a sufficiently high value that exceeds a critical value.
Technical Paper

A Predictive Model for the Combustion Process in Dual Fuel Engines

1995-10-01
952435
A multi-zone model has been developed for the prediction of the combustion processes in dual fuel engines and some of their performance features. The consequences of the interaction between the gaseous and the diesel fuels and the resulting modification to the combustion processes are considered. A reacting zone has been incorporated in the model to describe the partial oxidation of the gaseous fuel-air mixture while detailed kinetic schemes are employed to describe the oxidation of the gaseous fuel, right from the start of compression to the end of the expansion process. The associated formation and concentrations of exhaust emissions are correspondingly established. The model can predict the onset of knock as well as the operating features and emissions for the more demanding case of light load performance. Predicted values for methane operation show good agreement with corresponding experimental values.
Technical Paper

An Analysis of Fuel Droplets Ignition and Combustion within Homogeneous Mixtures of Fuel and Air

1994-03-01
940901
The paper describes an analytical approach that models the vaporization, ignition and combustion of liquid fuel droplets in a heated environment of homogeneously mixed gaseous fuel and air at constant pressure such as taking place in dual fuel engines of the compression ignition type. Results are presented typically for the ignition and combustion of n-heptane droplets initially introduced cold into a heated homogeneous surrounding of methane-air mixtures. Variations in various parameters in space and time, such as temperature, the concentrations of the two fuels, oxygen, and products of combustion, rates of energy release, etc. are presented and discussed.
Technical Paper

An Analytical Approach for the Optimization of a SI Engine Performance Including the Consideration of Knock

1998-05-04
981463
The present contribution describes an analytical approach for predicting the highest limit for acceptable power or efficiency for any spark ignition engine while ensuring knock free operation. A deterministic gradient based model combined with a simple genetic algorithm were used in association with a two-zone engine combustion model to predict analytically the necessary changes in specified operating parameters to produce optimum performance. Various examples involving mainly spark ignition engine operation with methane-hydrogen fuel mixtures are presented and discussed.
Technical Paper

An Analytical Examination of the Effects of Exhaust Gas Recirculation on the Compression Ignition Process of Engines Fuelled with Gaseous Fuels

1996-10-01
961936
The action of exhaust gas recirculation (EGR) is examined numerically to find out whether EGR can be used to enhance the preignition reactions of a cylinder charge in a motoring, compression ignition engine fuelled with a homogeneous gaseous fuel - air mixture. The changes to the concentrations and properties of the contents of the cylinder and the associated changes in the preignition reaction rates are followed over a number of consecutive, calculated working cycles at a constant engine speed to establish whether autoignition will take place and the number of cycles required for its occurrence. It is shown that controlled EGR can enhance the autoignition processes in gas-fuelled compression ignition engines by suitably ‘seeding’ the intake charge of the current cycle with the chemical species found in the exhaust gases of the previous cycle.
Technical Paper

An Examination of Cyclic Variations in a Dual Fuel Engine

1988-10-01
881661
The paper considers the cyclic variations in performance parameters of a dual fuel engine fuelled with methane. It is shown that such an engine does display cyclic variations that are greater than the corresponding diesel operation, yet smaller than comparable spark ignition operation. The extent of cyclic variation in peak cylinder pressure and ignition delay increases, for any power output, as the pilot diesel quantity is reduced and the extent of gas substitution is increased. The use of extremely small pilots in the unmodified engine can lead to erratic engine performance. Greater cyclic variations are associated with low load rather than high load operation. Furthermore, with an injection system which is well matched to the engine, there is only little cyclic variation associated solely with the pilot, even when its quantity is small.
Technical Paper

An Examination of Some of the Errors Normally Associated with the Calculation of Apparent Rates of Combustion Heat Release in Engines

1971-02-01
710135
The rate of heat release analysis of combustion processes in a diesel engine, derived from a knowledge of cylinder pressure time records, has now developed to be an effective tool for considering and evaluating the progress of these processes for research and development purposes. This paper examines some of the main errors and assumptions normally associated with the calculation of apparent rates of combustion heat release in engines, and suggests ways to improve the accuracy of these calculations.
Technical Paper

An Examination of the Combustion Processes of a Methane Fuelled Engine When Employing Plasma Jet Ignition

1989-08-01
891639
Examination is made of the changes that take place in the major parameters of the combustion process and engine performance when using three different designs of plasma jet igniters of the open cavity type in a methane fuelled single cylinder engine. The characteristics of the combustion process were analysed employing a two-zone diagnostic model based on cylinder pressure-time development data. The use of plasma jet igniters with methane as a fuel enhanced the rates of burning in the initial stages of combustion, especially with very lean mixtures. The lean limit of engine operation was also extended. Their use for near stoichiometric fast burning mixtures tends in comparison to contribute little towards enhancing engine performance.
Technical Paper

An Examination of the Ignition Delay Period in Dual Fuel Engines

1989-09-01
892140
The ignition delay period occurring in dual fuel engines operating on a wide range of gaseous fuels and in diesel engines with various inert diluents added to the intake charge is examined. The observed differences in the delay period between dual fuel and diesel operations are then attributed mainly to changes in the oxygen concentration of the charge, the charge effective temperature and the chemical kinetic processes.
Technical Paper

An Examination of the Role of Residual Gases in the Combustion Processes of Motored Engines Fuelled with Gaseous Fuels

1996-05-01
961081
The effects of residual gases on the combustion process of engines are examined through analysing the cyclic variations of autoignition in a motored engine fuelled with homogeneous gaseous fuel-air mixtures. The changes in composition and temperature of residual gases as well as the associated rates of the preignition reactions are followed over a number of consecutive working cycles at a constant engine speed to establish whether autoignition will take place and how many cycles are need for its occurrence. It is in that the residual gases associated with partial oxidation reactions tend to have strong kinetic but hardly any thermal or diluting effects, while residual gases produced from the more complete combustion following autoignition tend to possess significant thermal, kinetic and diluting effects.
Technical Paper

An Investigation of the Effects of the Addition of Dissociated Water Products to a Gas Fueled Spark Ignition Engine

1999-10-25
1999-01-3516
One of the main features of methane fueled spark ignition engines is their relatively slow flame propagation rates in comparison to liquid fuel applications which may lead to relatively lower power output and efficiency with increased emissions and cyclic variations. This is especially pronounced at operational equivalence ratios that are much leaner than the stoichiometric value. The addition of some hydrogen and oxygen to the methane may contribute towards speeding the combustion process and bring about significant improvements in performance and emissions. It has been suggested that the addition to the methane of products of water electrolysis generated in situ on board of a vehicle may produce such improvements.
Technical Paper

Comparative Studies of Methane and Propane as Fuels for Spark Ignition and Compression Ignition Engines

1983-08-08
831196
The paper reviews the combustion characteristics of the two fuels and sets out to consider their respective performance in both spark ignition and compression ignition engines. Results of comparative tests involving spark ignition engines over a wide range of operating conditions are presented and discussed. Some of the performance characteristics considered are those relating to power output, efficiency, tendency to knock, cyclic variations, optimum spark requirements and exhaust emissions. Similarly, some of the performance characteristics in compression ignition engines considered include power output, efficiency, tendency towards knock and autoignition, exhaust emissions and low operational temperature problems. Finally, the relative operational safety aspects of the two fuels are evaluated. It is then suggested that in this regard, methane has some excellent physical, chemical and combustion characteristics that makes it a particularly safe fuel.
Technical Paper

Consideration of Ignition Lag and Combustion Time in a Spark Ignition Engine Using a Data Acquisition System

1982-02-01
820758
An approach is described, employing a data acquisition system that provides information regarding the statistical cycle variation in a range of performance parameters of a spark ignition engine fuelled with methane. The approach can provide a simultaneous record of the rate of work production as well as the time taken for a flame kernel to be developed following spark ignition and the subsequent time needed to complete the combustion process. Such information can be provided either continuously or randomly over a large number of cycles. Thus, cyclic variation in performance parameters is linked to important combustion parameters without recourse to high speed photography nor to the use of transparent heads or pistons. Some typical results involving a single cylinder variable compression ratio CFR engine are then presented.
Technical Paper

Considering the Effects of Cyclic Variations when Modeling the Performance of a Spark Ignition Engine

2001-09-24
2001-01-3600
An approach for simulating cyclic variations in spark ignition engines is described. It is based on a stochastic modeling coupled to a comprehensive model developed for predicting engine performance, mainly for gas-fueled engine applications. Such an approach is shown capable of generating cycle to cycle variations of pressure-time development records that are in good agreement with experiment. An account of the corresponding extent of cyclic variation in major performance parameters can be also established. It is demonstrated that the probability of the incidence of knock can be determined for any set of operating and design conditions while using this approach with sufficiently comprehensive detailed chemical kinetics. Examples involving mainly methane operation are shown.
Technical Paper

Determination of the Performance of a Dual Fuel Diesel Engine with the Addition of Various Liquid Fuels to the Intake Charge

1983-02-01
830265
An examination of the engine performance and associated combustion is made for a dual fuel engine of the compression ignition type when additional auxiliary fuels were introduced in turn in the form of a spray into the main intake charge with methane being the main fuel. This was attempted with the view of modifying the dual fuel engine behaviour particularly at light load. Alcohols, gasoline, benzene or normal hexane were introduced in turn to various extents into the intake charge of the engine. Comparison with dual fuel operation on a range of gaseous fuels and with water spray injection was made. It is shown that gasoline, benzene or n-hexane intake addition reduced the overall ignition delay significantly and increased the power output of the dual fuel diesel engine at light load. This, however, was achieved at the cost of undermining the efficiency of fuel utilization at higher loads.
Technical Paper

Examination of Operational Limits in Gas Fueled Spark Ignition Engines

2000-06-19
2000-01-1944
There are distinct operational mixture limits beyond which satisfactory spark ignition engine performance can not be maintained. The values of these limit mixtures which depend on the mode of their determination, are affected by numerous operational and design factors that include the type of engine and fuel used. Simple approximate methods are presented for predicting these limits. Good agreement is shown to exist between the calculated and the corresponding experimental values over a range of operating conditions while operating on the gaseous fuels: methane, propane and hydrogen. The experimentally observed operational limits deviate very substantially from the corresponding accepted flammability limit values for quiescent conditions evaluated at the average temperature and pressure prevailing at the instant of the spark passage.
Technical Paper

Examination of the Combustion of a Fuel Jet in a Homogeneously Premixed Lean Fuel-Air Stream

1988-10-01
881662
There are numerous situations in a wide range of engineering applications involving combustion devices where the combustion of a fuel jet takes place in flowing streams containing varying proportions of a fuel homogeneously premixed with the surrounding air. Such applications can be found, for example, in dual fuel engines and in some gas turbine combustors. The paper describes some of the findings of an experimental investigation, supported by some analytical modeling, of the combustion of a circular gaseous fuel jet within lean homogeneous mixtures of various gaseous fuels and air. The nature of the combustion process of the pilot fuel jet, flame spread characteristics and limits within the surrounding moving atmosphere were considered in terms of the fuels used for the jet and the surrounding atmosphere and in terms of the jet discharge and surrounding stream flow characteristics.
X