Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

An Investigation of the Effects of the Addition of Dissociated Water Products to a Gas Fueled Spark Ignition Engine

1999-10-25
1999-01-3516
One of the main features of methane fueled spark ignition engines is their relatively slow flame propagation rates in comparison to liquid fuel applications which may lead to relatively lower power output and efficiency with increased emissions and cyclic variations. This is especially pronounced at operational equivalence ratios that are much leaner than the stoichiometric value. The addition of some hydrogen and oxygen to the methane may contribute towards speeding the combustion process and bring about significant improvements in performance and emissions. It has been suggested that the addition to the methane of products of water electrolysis generated in situ on board of a vehicle may produce such improvements.
Technical Paper

Examination of Operational Limits in Gas Fueled Spark Ignition Engines

2000-06-19
2000-01-1944
There are distinct operational mixture limits beyond which satisfactory spark ignition engine performance can not be maintained. The values of these limit mixtures which depend on the mode of their determination, are affected by numerous operational and design factors that include the type of engine and fuel used. Simple approximate methods are presented for predicting these limits. Good agreement is shown to exist between the calculated and the corresponding experimental values over a range of operating conditions while operating on the gaseous fuels: methane, propane and hydrogen. The experimentally observed operational limits deviate very substantially from the corresponding accepted flammability limit values for quiescent conditions evaluated at the average temperature and pressure prevailing at the instant of the spark passage.
Technical Paper

Hydrogen as a Fuel and the Feasibility of a Hydrogen-Oxygen Engine

1973-02-01
730089
A preliminary investigation was made into the use of hydrogen-oxygen mixtures in spark ignition engines. This appeared to be attractive in view of the serious air pollution problem. Furthermore, hydrogen has been considered by others as a possible alternative fuel to replace depleting petroleum resources. Following a literature survey regarding the combustion characteristics of hydrogen, a computer program based on a constant-volume combustion engine cycle was used to evaluate the overall performance of an engine. Another program, which considered chemical reaction kinetics, was used to predict the onset of autoignition in mixtures undergoing compression in an engine. Results of the program indicated that an attractive and safe way to use hydrogen-oxygen mixtures in an engine involved the recycling of exhaust gases. Such a system would be fed with a stoichiometric mixture, while excess hydrogen would be circulated within to control combustion in the engine.
Technical Paper

Some Considerations of the Safety of Methane, (CNG), as an Automotive Fuel - Comparison with Gasoline, Propane and Hydrogen Operation

1983-02-01
830267
The total number of vehicles fuelled with compressed natural gas, CNG, is relatively very small in comparison to gasoline fuelled vehicles. Accordingly, because of the lack of statistics of accidents involving CNG fuelled vehicles, their safety aspects are evaluated in comparison to automobiles fuelled with gasoline or some other alternative fuels such as propane, hydrogen, LNG or LH2. It is suggested that methane, CNG, has some excellent physical, chemical and combustion characteristics that make it a safe automotive fuel. These characteristics are reviewed and the superior relative safety of methane in automotive applications in comparison to applications involving the other fuels is demonstrated where well designed conversion systems and operations are employed.
Technical Paper

The Combustion of Gaseous Fuels in a Dual Fuel Engine of the Compression Ignition Type with Particular Reference to Cold Intake Temperature Conditions

1980-02-01
800263
The present contribution is mainly concerned with an investigation of the characteristics of dual fuel operation under cold intake temperatures, primarily from the viewpoint of engine performance and exhaust emissions. The gaseous fuels employed were methane, propane, hydrogen and ethylene. The addition of the inerts carbon dioxide and nitrogen were also considered. Comparison with the corresponding normal diesel operation was made throughout.
X