Refine Your Search

Search Results

Technical Paper

A Fundamental Study on Ignition Characteristics of Two-Component Fuel in a Diesel Spray

2006-10-16
2006-01-3383
The authors have explored the potential of fuel to control spray and its combustion processes in a diesel engine. Fuel has some potential for low emission and high thermal efficiency because its volatility and ignitability are one of the ultimate performing factors of the engines. In present study, the ignition process of mixed fuel spray was investigated in a constant volume combustion vessel and in a rapid compression and expansion machine, The ignition delay based on the diagram of rate of the heat release, the imaging of natural flame emissions and the numerical simulation were carried out to clarify the effect of the physical and chemical properties of mixed fuel on ignition characteristics.
Technical Paper

A Study of Direct Injection Diesel Engine Fueled with Hydrogen

2003-03-03
2003-01-0761
In this study, characteristics of the development and auto-ignition/combustion of hydrogen jets were investigated in a constant-volume vessel. The authors focused on the effects of the jet developing process and thermodynamic states of the ambient gas on auto-ignition delays of hydrogen jets. The results show that the ambient gas temperature and nozzle-hole diameter are significantly effective parameters. By contrast, it is clarified that the ambient gas oxygen concentration has a weak effect on the auto-ignition/combustion of hydrogen jets. Consequently, it is supposed that the mixture formation process is capable of improving the auto-ignition/combustion of hydrogen jets.
Technical Paper

Analysis of Diesel Spray Structure by Using a Hybrid Model of TAB Breakup Model and Vortex Method

2001-03-05
2001-01-1240
This study proposes a hybrid model which consists of modified TAB(Taylor Analogy Breakup) model and DVM(Discrete Vortex Method). In this study, the simulation process is divided into three steps. The first step is to analyze the breakup of droplet of injected fuel by using modified TAB model. The second step based on the theory of Siebers' liquid length is analysis of spray evaporation. The liquid length analysis of injected fuel is used for connecting both modified TAB model and DVM. The final step is to reproduce the ambient gas flow and inner vortex flow injected fuel by using DVM. In order to examine the hybrid model, an experiment of a free evaporating fuel spray at early injection stage of in-cylinder like conditions had been executed. The numerical results calculated by using the present hybrid model are compared with the experimental ones.
Technical Paper

Analysis of Knocking Mechanism Applying the Chemical Luminescence Method

1995-02-01
951005
One of the most effective means of improving the thermal efficiency and the specific fuel consumption in spark ignition engines is the increase of the compression ratio. However, there is a limit to it because of the generation of knocking combustion due to the rise of temperature and pressure in the unburnt mixture. Also in turbo charged spark ignition engines, the ignition timing cannot be advanced until MBT in order to avoid the knocking phenomena. Generally speaking, it is very difficult to investigate the phenomena in an actual engine, because there are many restriction and the phenomena are too complex and too fast. According-ly, it is advantageous to reveal the phenomena fundamentally, including the autoignition process of the end-gas by using simplified model equipment. Therefore, a rapid compression and expansion machine (RCEM) with a pan-cake combustion chamber was designed and developed for the experiments presented here.
Technical Paper

Atomization of Spray under Low-Pressure Field from Pintle Type Gasoline Injector

1992-02-01
920382
This paper presents an atomization mechanism of a spray injected into the low-pressure field, as the subject of injection system in a suction manifold of gasoline engine. Pure liquid fuel, which is n-Pentane or n-Hexane is injected into quiescent gaseous atmosphere at room-temperature and low- pressure through pintle type electronic control injector. Fuel sprays are observed by taking photographs for variation of the back pressure and the changes in spray characteristics with the back pressure below atmospheric pressure are examined in detail. In particular, in the case of the back pressure below the saturated vapor pressure of fuel, the atomization mechanism is discussed from a viewpoint of flash boiling phenomena, those are bubble growth rate and so on.
Technical Paper

CO2 Mixed Fuel Combustion System for Reduction of NO and Soot Emission in Diesel Engine

1997-02-24
970319
We propose a new concept on simultaneous reduction of NO and soot emissions in Diesel engine exhaust by the diesel fuel oil (n-Tridecane) with liquefied CO2 dissolved. The CO2 dissolved fuel is expected to undergo flash boiling or gas separation when being injected into the combustion chamber and improve spray atomization and mixing process both of which are primary factors to govern soot formation. Also the internal EGR effect caused by CO2 injected with the fuel is expected to NO formation. In order to assess this concept, combustion experiments were carried out using a rapid compression and expansion machine. Thus, flame characteristics and heat release rate were analyzed for the combustion process of diesel fuel and CO2 mixed fuel. And, it is revealed that the diesel fuel-liquefied CO2 mixed fuel can successfully reduce NO emission in a diesel combustion system.
Technical Paper

Characteristics of Free and Impinging Gas Jets by Means of Image Processing

1997-02-24
970045
A transient gas jet seems to be a model of a diesel spray because it has no vaporization process. Recently, CNG is utilized in a diesel engine. In the case of diesel engine, sprays or jets have the free state in some cases, and they are impinging surely on the piston surface in the other cases. The 2-D image of acetylene gas with tracer particles was taken by high-speed photography. In both jets, the outer shape was measured on the images and the characteristics of the internal flow was obtained by particle image velocimetry. Then, the physical models of these jets were constructed by use of experimental results.
Technical Paper

Characteristics of Transient Gas Diffusion Flame

1997-10-01
972965
CNG is one of the future fuel for a CI engine. Recently, the general tendency is the use of the high pressure injection system over 100 MPa in a CI engine for the near future severe regulation. Combustion phenomenon in a CI engine with such injection system is like a transient gas diffusion flame. The flow in a gas diffusion flame was investigated by the particle image velocimetry on its 2-D images, the relative soot concentration, the temperature and the relative CO2 concentration was detected in the experiments. And the model of transient gas diffusion flame was constructed by use of experimental data.
Technical Paper

Characteristics of a Diesel Spray Impinging on a Flat Wall

1989-02-01
890264
In a small high-speed DI diesel engine, injected fuel sprays impinge on the wall of piston cavity. Discussion and analysis of the combustion phenomena in the diesel engine demand the measurement of the characteristics of the impinging spray. In the experiments presented here, diesel fuel oil was injected into a high pressure chamber in which compressed air or CO2 gas at room temperature was charged. The single spray was impinged on a flat wall at a normal angle. The growth of the spray was photographed, not only with transmitted light but also with scattered light through a narrow slit. The temporal and spatial distribution of the droplets density in the impinging spray applying the concentric circle model was calculated using the data of the laser light extinction method. From these results, the detailed information concerning the droplets density in the impinging diesel spray was obtained.
Technical Paper

Detailed Chemical Kinetic Modeling of Diesel Spray Combustion with Oxygenated Fuels

2001-03-05
2001-01-1262
This paper confirms a structure for the soot formation process inside a burning diesel jet plume of oxygenated fuels. An explanation of how the soot formation process changes by the use of oxygenated fuel in comparison with that for using a conventional diesel fuel, and why oxygenated fuel drastically suppresses the soot formation has been derived from the chemical kinetic analysis. A detailed chemical kinetic mechanism, which is combined with various proposed chemical kinetic models including normal paraffinic hydrocarbon oxidation, oxygenated hydrocarbon oxidation, and poly-aromatic hydrocarbon (PAH) formation, was developed in present study. The calculated results are presented to elucidate the influence of fuel mixture composition and fuel structure, especially relating to oxygenated fuels, on PAH formation. The analysis also provides a new insight into the initial soot formation process in terms of the temperature range of PAH formation.
Technical Paper

Effect of ADOIL TAC Additive on Diesel Combustion

1991-11-01
912555
Some papers on the combustion in a diesel engine have been already presented to discuss the effect of the additive called ADOIL TAC. A bottom view DI diesel engine driven at 980rpm with no load was used in the experiment presented here, in order to make clear this effect. JIS second class light diesel fuel oil was injected through a hole nozzle at the normal test run. The additive was intermixed 0.01 vol. % in this fuel oil, in the experiments to compare with the normal combustion. The flame was taken by direct high-speed photography. Profiles of flame temperature and KL were detected on the film by image processing, applying the two-color method. Soot was visualized by high-speed laser shadowgraphy, and the heat release rate was calculated using the cylinder pressure diagram. Discussion on the effect of the additive on the combustion phenomena was made by using all the data.
Technical Paper

Effect of Ambient Gas Properties for Characteristics of Non-Reacting Diesel Fuel Spray

1997-02-24
970352
In this paper, spray characteristics were examined to deduce the effect of ambient gas properties. Considered ambient properties were the viscosity μa and density ρa, and thus the kinematic viscosity νa. The objective of this paper is to reveal the effect of compressibility of the ambient gas to spray formation. In the experiments, the changed ranges were And a standard-sac volume nozzle of hole diameter dn =0.25 mm (ln/dn=3.0) was used at constant injection pressure difference (Δp=16.2 MPa). Also the injection pressure was varied in the range of 55 to 120 MPa with a mini-sac volume nozzle of hole diameter dn =0.20 mm (ln/dn =5.5). Several different gases were used to change the ambient viscosity at a room temperature. From the experiments, it is obtained that larger the viscosity, the more the spray spreads in the radial direction, thus the spray angle gets larger and the tip penetration became shorter.
Technical Paper

Effect of Convective Schemes on LES of Fuel Spray by Use of KIVALES

2008-04-14
2008-01-0930
In this study, a numerical experiment using a 2D convective equation and LES of an evaporative diesel spray for different convective schemes has been performed to examine effects of convective schemes on a fuel-air mixture formation of the diesel spray simulation and to determine the convective scheme used in KIVALES. In addition to KIVALES original schemes, such as QSOU, PDC and IDC, CIP was incorporated into KIVALES in order to calculate the convective terms with low numerical diffusion. The numerical experiment using the 2D convective equation showed that the numerical diffusion of CIP scheme was lowest in the convective schemes used in present study. However CIP scheme used was not a monotone scheme completely due to the overshoot and the undershoot of the scalar provided near the boundary. Hence, CIP scheme was employed for only the convective term of the LES momentum equation, while the other convective schemes were calculated using QSOU, which is a monotone scheme.
Technical Paper

Effect of Nozzle Configurations for Characteristics of Non-Reacting Diesel Fuel Spray

1997-02-24
970355
The spray structure under the pressurized atmosphere at a room temperature was examined by the various photographic methods. The fuel flow inside the nozzle was investigated by the transparent model nozzles. The experimental analysis of sprays yielded the spray dispersing angle, the distribution of fuel droplets inside the spray and the jet intact core length. The obtained results of those spray characteristics showed that the spray structure is divided into two spatial regimes due to their formation mechanisms. Within 10 mm from the nozzle, the spray dispersion is dominated by the turbulent states of fuel which are initiated inside the nozzle. At distance from the nozzle z > 20 - 40 mm, the spray consists of an induced gas vortex street whose length is about half of the spray width. It is proposed that the kinematic viscosity of ambient gas is a important factor which rules the process of momentum exchange form the fuel jet to the ambient gas.
Technical Paper

Effects of Ambient Gas Conditions on Ignition and Combustion Process of Oxygenated Fuel Sprays

2003-05-19
2003-01-1790
This work presents the ignition delay time characteristics of oxygenated fuel sprays under simulated diesel engine conditions. A constant volume combustion vessel is used for the experiments. The fuels used in the experiments were three oxygenated fuels: diethylene glycol dibutyl ether, diethylene glycol diethyl ether, and diethylene glycol dimethyl ether. JIS 2nd class gas oil was used as the reference fuel. The ambient gas temperature and oxygen concentration were ranging from 700 to 1100K and from 21 to 9%, respectively. The results show that the ignition delay of each oxygenated fuel tested in this experiments exhibits shorter than that of gas oil fuel for the wide range of ambient gas conditions. Also, NTC (negative temperature coefficient) behavior which appears under shock tube experiment for homogenous fuel-air mixture was observed on low ambient gas oxygen concentration for each fuel. And at the condition, the ignition behavior exhibits two-stage phase.
Technical Paper

Effects of Flame Lift-Off and Flame Temperature on Soot Formation in Oxygenated Fuel Sprays

2003-03-03
2003-01-0073
Considering the bell-shaped temperature dependence of soot particle formation, the control of flame temperature has a possibility to drastically suppress of soot formation. Furthermore, oxygenated fuels are very effective on soot reduction, and the use of these kinds of fuels has a potentiality for smokeless diesel combustion. In this paper, the effects of flame lift-off and flame temperature on soot formation in oxygenated fuel sprays were experimentally investigated using a constant volume combustion vessel which simulated diesel engine conditions. The diffusion flame lift-off length was measured in order to estimate the amount of the oxygen entrained upstream of the flame lift-off length in the fuel jet. This was determined from time-averaged OH chemiluminescence imaging technique. Also, the flame temperature and soot concentration were simultaneously evaluated by means of two-color method.
Technical Paper

Flame Structure and Combustion Characteristics in Diesel Combustion Fueled with Bio-diesel

2004-03-08
2004-01-0084
The Flame structure and combustion characteristics for two waste-cooking oils were investigated in detail. One fuel is the waste-cooking oil methyl esters. This fuel is actually applied to the garbage collection vehicle with DI diesel engine (B100) and the city bus (B20; 80% gas oil is mixed into B100 in volume) as an alternative fuel of gas oil in Kyoto City. Another one is the fuel with ozone treatment by removing impurities from raw waste-cooking oils. Here, in order to improve the fuel properties, kerosene is mixed 70% volume in this fuel. This mixed fuel (i-BDF) is applied into several tracks and buses in Wakayama City. In the experiments, the used fuels were gas oil, i-BDF, B100 and B20. Spray characteristics and basic combustion properties were measured inside a rapid compression and an expansion machine (RCEM).
Technical Paper

Fuel Design Concept for Low Emission in Engine Systems 4th Report: Effect of Spray Characteristics of Mixed Fuel on Exhaust Concentrations in Diesel Engine

2003-03-03
2003-01-1038
In this study, the novel fuel design concept has been proposed in order to realize the low emission and combustion control in engine systems. In this fuel design concept, the mixed fuels with a high volatility fuel (gasoline or gaseous fuel components) and a low volatility fuel (gas oil or fuel oil components) are used in order to improve the spray characteristics by flash boiling. In our previous papers on this study, the fundamental characteristics of spray and its combustion of mixed fuel were reported. In this paper, heat release and exhaust emission (smoke, NOx and THC) characteristics of single cylinder diesel engine operated with the mixed fuels were investigated under each load. The exhaust performance of diesel engine could be improved using mixed fuel, because fuel properties and spray characteristics were controlled by changing mixing fraction of the mixed fuel.
Technical Paper

Investigation on the Characteristics of Diesel Fuel Spray

1980-09-01
800968
The authors carried out a basic and systematic investigation on diesel combustion processes using three different experimental apparatuses. This paper summarized the experimental results obtained from the three devices. Among the data contained in this paper are; (1) The structure and shape of diesel spray, the air movement around diesel spray and the spatial and temporal distributions of the size of droplets in diesel spray injected into the high pressure and room temperature charge. (2) The shape of diesel spray injected into the high pressure and high tempertaure charge. (3) The characteraistics of flame, and illumination delay, and ignition delay in the high pressure and high temperature charge.
Technical Paper

Investigation on the Initial Part and the Spray Formation Delay of Diesel Spray

1983-02-01
830451
As authors reported in SAE Trans. 800968, entitled “Investigation on the Characteristics of Diesel Fuel Spray”, the flame never proceeds into the initial-part of the spray during injection. The length of the initial part-lies within 10 to 15 mm regardless of the conditions of the injection systems and of the ambient conditions. The ignition delay does not decrease but becomes constant when the ambient temperature or the pressure exceed a discrete value. The authors would like to propose a new concept of “Spray Formation Delay” during which the field is generated where the physical and chemical delay can exist. The spray formation delay is one of the major factors which control the above mentioned limitation of ignition delay. The characteristics of the spray formation delay are investigated and clarified.
X