Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Performance and Emissions Analysis of a Diesel Engine Fueled with Pre-Heated Soybean Oil

2017-11-07
2017-36-0215
Vegetable oils have been seen as promising surrogates to petroleum diesel in compression ignition internal combustion engines, showing similar performance and combustion characteristics of the fossil fuel. Nevertheless, the use of straight (crude) vegetable oil (SVO) is unfavorable due to its high viscosity, which affects the Sauter Mean Diameter of fuel spray and, consequently, fuel-air mixing process, resulting in incomplete combustion. The SVO heating, as well as transesterification and blending with diesel or additives, are some of the techniques to reduce its viscosity and enable its use. Of these the most simple and direct is the heating and was used in this paper to evaluate the performance and emissions of a diesel engine fueled with preheated soybean oil (PSO) by electrical resistances. The experiments were carried out in a single cylinder four-stroke compression ignition engine with mechanical fuel injection.
Technical Paper

Study of Exhaust Re-Breathing Application on a DI SI Engine at Partial Load Operation

2018-09-03
2018-36-0129
Using Exhaust Gas Recycling (EGR) on internal combustion engines enables the reduction of emissions with a low or even no cost to the engine efficiency at part-load operation. The charge dilution with EGR can even increase the engine efficiency due to de-throttling and reduction of part load pumping losses. This experimental study proposed the use of late exhaust valve closure (LEVC) to achieve internal EGR (increased residual gas trapping). A naturally aspirated single cylinder direct injection spark ignition engine equipped with four electro-hydraulic actuated valves that enabled full valve timing and lift variation. Eight levels of positive valve overlap (PVO) with LEVC were used at the constant load of 6.0 bar IMEP and the speed of 1500 rpm. The results have shown that later exhaust valve closure (EVC) required greater intake pressures to maintain the engine load due to the higher burned gases content. Hence, lower pumping losses and thus higher indicated efficiency were obtained.
Technical Paper

The Effect of Spark Ignition on the CAI Combustion Operation

2005-10-24
2005-01-3738
The present paper aims to investigate the influence of spark ignition on CAI combustion based on internal EGR strategy. Controlled Auto-ignition (CAI) combustion is facilitated in a Ricardo single cylinder engine with a pair of special camshafts, which valve lift and cam profile are modified to trap enough hot residuals. Operation regions and other detailed combustion characteristics of the CAI engine operation are analyzed and compared between pure CAI mode and the CAI mode with assisted spark ignition. The results show that spark ignition can play an important role in controlling CAI combustion ignition in low load boundary region. The low temperature chemical reaction process is shortened and the auto ignition timing is advanced due to the spark discharge. Meantime, lower fuel consumption and cycle-to-cycle variations can be achieved.
X