Refine Your Search

Topic

Search Results

Standard

Broadband PLC Communication for Plug-in Electric Vehicles

2014-10-21
CURRENT
J2931/4_201410
This SAE Technical Information Report SAE J2931/4 establishes the specifications for physical and data-link layer communications using broadband Power Line Communications (PLC) between the plug-In electric vehicle (PEV) and the electric vehicle supply equipment (EVSE) DC off-board-charger. This document deals with the specific modifications or selection of optional features in HomePlug Green PHY v1.1 (HomePlug GP1.1) necessary to support the automotive charging application over Control Pilot lines as described in SAE J1772™. PLC may also be used to connect directly to the Utility smart meter or home area network (HAN), and may technically be applied to the AC mains, both of which are outside the scope of this document.
Standard

Broadband PLC Communication for Plug-in Electric Vehicles

2018-05-15
WIP
J2931/4
This SAE Technical Information Report SAE J2931/4 establishes the specifications for physical and data-link layer communications using broadband Power Line Communications (PLC) between the plug-In electric vehicle (PEV) and the electric vehicle supply equipment (EVSE) DC off-board-charger. This document deals with the specific modifications or selection of optional features in HomePlug Green PHY v1.1 (HomePlug GP1.1) necessary to support the automotive charging application over Control Pilot lines as described in SAE J1772™. PLC may also be used to connect directly to the Utility smart meter or home area network (HAN), and may technically be applied to the AC mains, both of which are outside the scope of this document.
Standard

Broadband PLC Communication for Plug-in Electric Vehicles

2012-07-26
HISTORICAL
J2931/4_201207
This SAE Technical Information Report SAE J2931/4 establishes the specifications for physical and data-link layer communications using broadband Power Line Communications (PLC) between the Plug-In Vehicle (PEV) and the Electric Vehicle Supply Equipment (EVSE) DC off-board-charger. This document deals with the specific modifications or selection of optional features in HomePlug Green PHY v1.1 necessary to support the automotive charging application over Control Pilot lines as described in SAE J1772™. PLC may also be used to connect directly to the Utility smart meter or Home Area Network (HAN), and may technically be applied to the AC mains, both of which are outside the scope of this document.
Standard

Communication Between Plug-In Vehicles and Off-Board DC Chargers

2015-05-13
WIP
J2847/2
This SAE Recommended Practice SAE J2847-2 establishes requirements and specifications for communication between Plug-in Electric Vehicle (PEV) and the DC Off-board charger. Where relevant, this document notes, but does not formally specify, interactions between the vehicle and vehicle operator. This document applies to the off-board DC charger for conductive charging, which supplies DC current to the Rechargable Energy Storage System (RESS) of the electric vehicle through a SAE J1772™ coupler. Communications will be on the SAE J1772 Pilot line for PLC communication. The details of PowerLine Communications (PLC) are found in SAE J2931/4. The specification supports DC energy transfer via Forward Power Flow (FPF) from source to vehicle.
Standard

Communication Between Plug-In Vehicles and Off-Board DC Chargers

2012-08-20
HISTORICAL
J2847/2_201208
This SAE Recommended Practice SAE J2847-2 establishes requirements and specifications for communication between PLUG-IN ELECTRIC VEHICLE (EVCC)s and the DC Off-board charger. Where relevant, this document notes, but does not formally specify, interactions between the vehicle and vehicle operator. This document applies to the off-board DC charger for conductive charging, which supplies DC current to the RESS of the electric vehicle through a SAE J1772™ coupler. Communications will be on the J1772 Pilot line for PLC communication. The details of PLC communications are found in SAE J2931/4. The specification supports DC energy transfer via Forward Power Flow (FPF) from source to vehicle.
Standard

Communication Between Plug-In Vehicles and Off-Board DC Chargers

2015-04-09
CURRENT
J2847/2_201504
This SAE Recommended Practice SAE J2847-2 establishes requirements and specifications for communication between Plug-in Electric Vehicle (PEV) and the DC Off-board charger. Where relevant, this document notes, but does not formally specify, interactions between the vehicle and vehicle operator. This document applies to the off-board DC charger for conductive charging, which supplies DC current to the Rechargable Energy Storage System (RESS) of the electric vehicle through a SAE J1772™ coupler. Communications will be on the SAE J1772 Pilot line for PLC communication. The details of PowerLine Communications (PLC) are found in SAE J2931/4. The specification supports DC energy transfer via Forward Power Flow (FPF) from source to vehicle. SAE has published multiple documents relating to PEV and vehicle-to-grid interfaces. The various document series are listed below, with a brief explanation of each.
Standard

Communication Between Plug-in Vehicles and Off-Board DC Chargers

2011-10-21
HISTORICAL
J2847/2_201110
This SAE Recommended Practice SAE J2847-2 establishes requirements and specifications for communication between plug-in electric vehicles and the DC Off-board charger. Where relevant, this document notes, but does not formally specify, interactions between the vehicle and vehicle operator. This applies to the off-board DC charger for conductive charging, which supplies DC current to the vehicle RESS of the electric vehicle through a SAE J1772™ Hybrid coupler or SAE J1772™ AC Level 2 type coupler on DC power lines, using the AC power lines or the pilot line for PLC communication, or dedicated communication lines. The specification supports DC energy transfer via Forward Power Flow (FPF) from source-to-vehicle. This is the 1st version of this document and completes step 1 effort that captures the initial objectives of the SAE task force. The intent of step 1 was to record as much information on “what we think works” and publish.
Standard

Communication between Plug-in Vehicles and the Utility Grid

2010-06-16
HISTORICAL
J2847/1_201006
This SAE Recommended Practice J2847 establishes requirements and specifications for communication between plug-in electric vehicles and the electric power grid, for energy transfer and other applications. Where relevant, this document notes, but does formally specify, interactions between the vehicle and vehicle operator.
Standard

Communication between Plug-in Vehicles and the Utility Grid

2011-05-09
HISTORICAL
J2847/1_201105
This SAE Recommended Practice SAE J2847/1 establishes requirements and specifications for communication between plug-in electric vehicles and the electric power grid, for energy transfer and other applications. Where relevant, this document notes, but does formally specify, interactions between the vehicle and vehicle operator.
Standard

Communication between Wireless Charged Vehicles and Wireless EV Chargers

2017-06-19
WIP
J2847/6
This SAE Recommended Practice SAE J2847-6 establishes requirements and specifications for communications messages between wirelessly charged electric vehicles and the wireless charger. Where relevant, this document notes, but does not formally specify, interactions between the vehicle and vehicle operator. This is the 1st version of this document and captures the initial objectives of the SAE task force. The intent of step 1 is to record as much information on “what we think works” and publish. The effort continues however, to step 2 that allows public review for additional comments and viewpoints, while the task force also continues additional testing and early implementation. Results of step 2 effort will then be incorporated into updates of this document and lead to a republished version. The next revision will address the harmonization between SAE J2847-6 and ISO/IEC 15118-7 to ensure interoperability.
Standard

Communication between Wireless Charged Vehicles and Wireless EV Chargers

2015-08-05
CURRENT
J2847/6_201508
This SAE Recommended Practice SAE J2847-6 establishes requirements and specifications for communications messages between wirelessly charged electric vehicles and the wireless charger. Where relevant, this document notes, but does not formally specify, interactions between the vehicle and vehicle operator. This is the 1st version of this document and captures the initial objectives of the SAE task force. The intent of step 1 is to record as much information on “what we think works” and publish. The effort continues however, to step 2 that allows public review for additional comments and viewpoints, while the task force also continues additional testing and early implementation. Results of step 2 effort will then be incorporated into updates of this document and lead to a republished version. The next revision will address the harmonization between SAE J2847-6 and ISO/IEC 15118-7 to ensure interoperability.
Standard

Communication for Plug-in Vehicles as a Distributed Energy Resource

2018-11-27
WIP
J2847/3
This document applies to a Plug-in Electric Vehicle (PEV) which is equipped with an onboard inverter and communicates using the Smart Energy Profile 2.0 Application Protocol (SEP2). It is a supplement to the SEP2 Standard, which supports the use cases defined by J2836/3TM. It provides guidance for the use of the SEP2 Distributed Energy Resource Function Set with a PEV. It also provides guidance for the use of the SEP2 Flow Reservation Function Set, when used for discharging. It is not intended to be a comprehensive guide to the use of SEP2 in a PEV.
Standard

Communication for Plug-in Vehicles as a Distributed Energy Resource

2013-12-10
CURRENT
J2847/3_201312
This document applies to a Plug-in Electric Vehicle (PEV) which is equipped with an onboard inverter and communicates using the Smart Energy Profile 2.0 Application Protocol (SEP2). It is a supplement to the SEP2 Standard, which supports the use cases defined by J2836/3™. It provides guidance for the use of the SEP2 Distributed Energy Resource Function Set with a PEV. It also provides guidance for the use of the SEP2 Flow Reservation Function Set, when used for discharging. It is not intended to be a comprehensive guide to the use of SEP2 in a PEV.
Standard

Communication for Smart Charging of Plug-in Electric Vehicles Using Smart Energy Profile 2.0

2019-08-20
CURRENT
J2847/1_201908
This document describes the details of the Smart Energy Profile 2.0 (SEP2.0) communication used to implement the functionality described in the SAE J2836-1 use cases. Each use case subsection includes a description of the function provided, client device requirements, and sequence diagrams with description of the steps. Implementers are encouraged to consult the SEP2.0 schema and application specification for further details. Where relevant, this document notes, but does formally specify, interactions between the vehicle and vehicle operator.
Standard

Communication for Smart Charging of Plug-in Electric Vehicles using Smart Energy Profile 2.0

2013-11-05
HISTORICAL
J2847/1_201311
This document describes the details of the Smart Energy Profile 2.0 (SEP2.0) communication used to implement the functionality described in the SAE J2836/1™ use cases. Each use case subsection includes a description of the function provided, client device requirements, and sequence diagrams with description of the steps. Implementers are encouraged to consult the SEP2.0 Schema and Application Specification for further details. Where relevant, this document notes, but does formally specify, interactions between the vehicle and vehicle operator.
Standard

Digital Communications for Plug-in Electric Vehicles

2015-01-05
WIP
J2931/1
This SAE Information Report SAE J2931 establishes the requirements for digital communication between Plug-In Electric Vehicles (PEV), the Electric Vehicle Supply Equipment (EVSE) and the utility or service provider, Energy Services Interface (ESI), Advanced Metering Infrastructure (AMI) and Home Area Network (HAN). This is the third version of this document and completes the effort that specifies the digital communication protocol stack between Plug-in Electric Vehicles (PEV) and the Electric Vehicle Supply Equipment (EVSE). The purpose of the stack outlined in Figure 1 and defined by Layers 3 to 6 of the OSI Reference Model (Figure 1) is to use the functions of Layers 1 and 2 specified in SAE J2931/4 and export the functionalities to Layer 7 as specified in SAE J2847/2 (as of August 1, 2012, revision) and SAE J2847/1 (targeting revision at the end of 2012).
Standard

Digital Communications for Plug-in Electric Vehicles

2012-01-24
HISTORICAL
J2931/1_201201
This SAE Information Report SAE J2931 establishes the requirements for digital communication between Plug-In Vehicles (PEV), the Electric Vehicle Supply Equipment (EVSE) and the utility or service provider, Energy Services Interface (ESI), Advanced Metering Infrastructure (AMI) and Home Area Network (HAN). This is the first version of this document and completes the step 1 effort that captures the initial objectives of the SAE task force. The intent of step 1 was to record as much information on "what we think works" and publish. The effort continues however, to step 2 that allows public review for additional comments and viewpoints, while the task force also continues additional testing and early implementation. Results of the step 2 effort will then be incorporated into updates of this document and lead to a republished version.
Standard

Digital Communications for Plug-in Electric Vehicles

2012-09-07
HISTORICAL
J2931/1_201209
This SAE Information Report SAE J2931 establishes the requirements for digital communication between Plug-In Vehicles (PEV), the Electric Vehicle Supply Equipment (EVSE) and the utility or service provider, Energy Services Interface (ESI), Advanced Metering Infrastructure (AMI) and Home Area Network (HAN). This is the second version of this document and completes the step 2 effort that specifies the digital communication protocol stack between Plug-in Electric Vehicles (PEV) and the Electric Vehicle Supply Equipment (EVSE). The purpose of the stack outlined in Figure 1 and defined by Layers 3 to 6 of the OSI Reference Model (Figure 1) is to use the functions of Layers 1 and 2 specified in SAE J2931/4 and export the functionalities to Layer 7 as specified in SAE J2847/2 (as of August 1, 2012, revision) and SAE J2847/1 (targeting revision at the end of 2012).
Standard

Digital Communications for Plug-in Electric Vehicles

2014-12-11
CURRENT
J2931/1_201412
This SAE Information Report SAE J2931 establishes the requirements for digital communication between Plug-In Electric Vehicles (PEV), the Electric Vehicle Supply Equipment (EVSE) and the utility or service provider, Energy Services Interface (ESI), Advanced Metering Infrastructure (AMI) and Home Area Network (HAN). This is the third version of this document and completes the effort that specifies the digital communication protocol stack between Plug-in Electric Vehicles (PEV) and the Electric Vehicle Supply Equipment (EVSE). The purpose of the stack outlined in Figure 1 and defined by Layers 3 to 6 of the OSI Reference Model (Figure 1) is to use the functions of Layers 1 and 2 specified in SAE J2931/4 and export the functionalities to Layer 7 as specified in SAE J2847/2 (as of August 1, 2012, revision) and SAE J2847/1 (targeting revision at the end of 2012).
Standard

Electric Vehicle Battery Abuse Testing

1999-03-11
HISTORICAL
J2464_199903
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. It describes a body of tests which may be used as needed for abuse testing of electric or hybrid electric vehicle batteries to determine the response of such batteries to conditions or events which are beyond their normal operating range. This document is derived from a similar document originally developed by the U.S. Advanced Battery Consortium. (See 2.2.1.)
X