Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A Literature Review of the Effects of Piston and Ring Friction and Lubricating Oil Viscosity on Fuel Economy

1978-02-01
780673
This paper reviews piston and ring friction which can account for 65% of the mechanical friction in an internal combustion engine. It shows that cylinder liner lubrication is predominantly hydrodynamic with localized contact between ring and liner at TDC firing. The degree of contact may increase during transient conditions. Piston ring friction in the hydrodynamic region is proportional to the square root of the viscosity. The viscosity is affected by temperature and pressure which can reach peak values of 340°F and 4000 psi, respectively. Gains in fuel economy through viscosity reductions have been reduced in the last 25 years due to changes in piston and ring design.
Technical Paper

A Single-Cylinder High BMEP Engine for Evaluating Lubricant Effects on Piston Deposits, Ring Wear, Oil Consumption, and Bore Polishing

1980-02-01
800437
The subject of this paper is a unique single-cylinder, direct injection lubricant test engine which matches current and future diesel engine design trends. The paper demonstrates that lubricant test results from this engine correlate with results from a highly turbocharged, six-cylinder engine when operating with both cutback and tight-fitting crown land pistons. An additional finding from this study was a correlation in both engines between ring weight loss and cylinder bore polishing when tight-fitting crown land pistons are used.
Journal Article

Extending the Boundaries of Diesel Particulate Filter Maintenance With Ultra-Low Ash - Zero-Phosphorus Oil

2012-09-10
2012-01-1709
By 2014, all new on- and off-highway diesel engines in North America, Europe and Japan will employ diesel particulate filters (DPF) in the exhaust in order to meet particulate emission standards. If the pressure across the DPF increases due to incombustibles remaining after filter regeneration, the exhaust backpressure will increase, and this in turn reduces fuel economy and engine power, and increases emissions. Due to engine oil consumption, over 90% of the incombustibles in the DPF are derived from inorganic lubricant additives. These components are derived from calcium and magnesium detergents, zinc dithiophosphates (ZnDTP) and metal-containing oxidation inhibitors. They do not regenerate as they are non-volatile metals and salts. Consequently, the DPF has to be removed from the vehicle for cleaning. Ashless oil could eliminate the need for cleaning.
Technical Paper

Mechanical Degradation of Viscosity Modifiers in Heavy Duty Diesel Engine Lubricants in Field Service

2003-10-27
2003-01-3223
Modern multi-grade engine lubricants are formulated to “stay in grade” during field service. Viscosity loss during the early stages of lubricant life is commonly believed to be caused by mechanical degradation of the viscosity modifier in the engine [1]. The Kurt Orbahn shear stability bench test (ASTM D 6278, 30 cycles) has been the industry standard predictor of viscosity loss due to polymer shear in heavy duty diesel engine lubricants. However, the Engine Manufacturers' Association (EMA) has expressed some concern that it underestimates the degree of polymer shear found in certain engines in the field, such as the Navistar 6.0L HEUI (Hydraulic Electronic Unit Injector) Power Stroke engine; a more severe bench test would serve to improve correlation with this and other similar engine designs. This paper offers a new approach for critically examining the relationship between the bench test and field performance.
Journal Article

Minimizing Diesel Particulate Filter Incombustibles by Using Ultra Low Ash - Zero Phosphorus Oil

2014-10-13
2014-01-2798
Due to engine oil consumption, over 90% of the incombustibles in the diesel particulate filters (DPF) are derived from organometallic lubricant additives. These components are derived from calcium and magnesium detergents, zinc dithiophosphates (ZnDTP) and metal-containing oxidation inhibitors. They do not regenerate as they are non-volatile metals and salts. Consequently, the DPF has to be removed from the vehicle for cleaning. Ashless oil could eliminate the need for cleaning. This study initially focused on development of an ashless oil, but eventually concluded that this oil could not meet the valve-train wear requirements of the API CJ-4, SN/ACEA E9 oil categories. However, a zero-phosphorus oil with no ZnDTP and an extremely low sulfated ash of 0.4% demonstrated that it could meet critical engine tests in API CJ-4/ACEA/SN. The above oil, which has been optimized at 0.3% sulfated ash, has proven field performance in Cummins ISX with DPF using ultra low sulfur diesel (ULSD).
Technical Paper

On The Road to 2010 Emissions: Field Test Results and Analysis with DPF-SCR System and Ultra Low Sulfur Diesel Fuel

2005-10-24
2005-01-3716
This paper reviews field test results in 23 Volvo D12C non-Exhaust Gas Recirculation (EGR) diesel engines using continuously regenerating Diesel Particulate Filter (DPF) with Selective Catalytic Reduction (SCR) and ultra low sulfur diesel fuel at 4-10 ppm. This 2-year field test provided an opportunity to measure on-road nitrogen oxide (NOx) emissions, and to do in-depth analysis of the incombustible material remaining in the filters. In addition, two crankcase oils were used at 1.0% and 1.4% sulfated ash to provide enhanced information on the material collected in the filters, and on oil drain capability. The study demonstrates that the U.S. Environmental Pro-tection Agency (EPA) 2007 emissions can be met. After 2 years in the field the 23 trucks using the DPF-SCR system are still providing a very high NOx conversion of 75% on fleet average. The filter material contained only 2 wt-% carbon, which demonstrates the effectiveness of the DPF-SCR system in combusting soot.
X